
Programming

With

wxDev-C++

By Sof.T

Covering using wxDev-C++ for

Programming and Debugging

Basic C and C++ Programming

Using wxWidgets with wxDev-

C++

Answers Frequently Asked

Questions

Source Code Available Online

Copyright (C) 2006 Sof.T

This book and associated source code is free published material; you can redistribute it
and/or modify it under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your option) any later
version.

This book and associated source code is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
book; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA
02139, USA.

Version No: 0.7.1
Release Date: 17th October 2007
Newest version available from

http://sourceforge.net/project/showfiles.php?group_id=173102

Programming With wxDev-C++

“It’s got some quirks but then again don’t we all”
NinjaNL

Contents

The Boring Bit

• Introduction
• History of wxDev-C++
• Who This Book Is For
• Acknowledgements

Part 1 – C / C++ Programming with wxDev-C++
• Chapter 1 – Downloading, Installing and Updating wxDev-C++

o Introduction
o Downloading wxDev-C++
o Installing wxDev-C++
o Updating wxDev-C++
o Adding Extra Packages

• Chapter 2 – Compiling your first program
o Introduction
o Opening an existing project
o Creating your own project

• Chapter 3 – Basic C Programming
o Introduction
o Break down of a simple example
o Basic C
o Conditional Loops
o Conditional Execution
o Preprocessor
o Functions
o Input/Output and other useful functions
o Pointers
o Memory allocation
o Arrays
o Strings
o Structures

• Chapter 4 – Basic C++ Programming
o Introduction
o Break down of a simple example
o Basic C++
o Functions
o Memory allocation

o Classes
o Input/Output
o Strings
o Namespaces
o Exceptions
o Templates

• Chapter 5 – Finding your way around the IDE
• Chapter 6 – Debugging with wxDev-C++
• DevC++ Related FAQs

o What is this I hear about an Easter egg in Dev-C++?
o Why is my program not recompiled when one of the header files is

altered?
Part 2 – Basic Development with wxWidgets and wxDev-C++

• Chapter 7 – Creating a Basic HTML Editor
o Introduction
o Starting a wxWidgets Project
o Using the Form Designer
o Altering Properties
o Adding Code

• Chapter 8 – Working With Frames and Dialogs
o Introduction
o Creating a New Project
o Multiple Frame Project
o Adding a New Form
o Adding a New Dialog
o Sample Application Part 1 – The outline

• Chapter 9 – The Component Palette
o Introduction
o Adding Components to a Frame or Dialog
o Altering Components

� Direct Manipulation of Components
� The Designer Form Context Menu
� Component Properties

o The Components
� Sizers
� Controls

• Text Controls
• Buttons
• Choices
• The Rest

� Window
� Toolbar
� Menu
� Dialogs
� System
� MMedia

� Unofficial
o Sample Application Part 2 – The GUI

� The Main Form
� The About Box
� The Splash Screen
� The Insert Hyperlink Dialog
� The Create Table Dialog
� The Insert Image Dialog

o Advanced Users
• Chapter 10 – Making It Work With Code

o Introduction
o Where to add your code (or where did it go)
o Responding to Events
o Types of Event
o Sample Application Part 3 – The code

� The Application Code
� The Splash Screen
� The Dialogs
� The Main Frame
� Making it all work
� Tidying Up

• Chapter 11 – Guidelines for Professional Looking Programs
o Naming Conventions
o Mnemonics or Keyboard Accelerators
o Working with Multiple Source Code Files
o Other Points
o Sample Application Part 4 – Making it professional

• Basic wxDev-C++ Related FAQs
o Why does my program look different when I compile it?
o Why does my program not look like a Windows XP program when I

compile it?
o wxDev-C++ keeps crashing what’s wrong, what can I do?
o I started wxDev-C++ then selected File|New|New wxFrame but when I

pressed compile nothing happens.
o I try to compile my project but get lots of errors.
o I disabled code completion, but the visual designer keeps complaining,

why does the designer need code completion enabled?
o I have installed a new version of wxDev-C++ or a new version of the

wxWidgets library. Now when I try to compile a previously working
project I get this error “cannot find –lwxmsw25”. What is wrong?

o I have installed a new version of wxDev-C++ or a new version of the
wxWidgets library. Everything compiles fine, but when I try to run the
program I get a library mismatch error dialog. What is wrong?

o I altered a line in the wxWidgets setup.h file to enable a feature I need.
Now when I build my program I get a library mismatch dialog. What did I
do wrong?

o I try to compile my wxWidgets project but I keep getting the error
“[Resource error] can’t open cursor file ‘wx/msw/hand.cur’: No such file
or directory. What am I doing wrong?

o I moved my project files (or downloaded the source code examples) and
now I’m getting a resource error.

o I am using wxDev-C++ Version 6.10 or 6.10.1 and the class browser does
not seem to be working. What can I do?

o I am using wxDev-C++ with the Microsoft compiler. At link time I get the
error <filename>.obj : error LINK2001 : unresolved external symbol
__pexit. What is wrong?

o I want to create large frames but I cannot drag the frame beyond the
boundaries of the designer or access all of the frame.

o I have one or more floating yellow boxes containing function definitions
that reappear every time I load my project. Even when I minimise wxDev-
C++ they are still there. How cam I get rid of them?

o Where can I go for more help?
Part 3 – Advanced Development with wxWidgets and wxDevC++

• Chapter 12 - Creating and using other controls
o The Simple Way
o The Complex Way

• Chapter 13 – Working with other frameworks
o OpenGL
o SDL

Part 4 – Going Beyond the Boundaries of this Book
• Alternatives
• Resources

Appendix
A. Keyboard Shortcuts
B. C/C++ Keywords
C. Appendix C – wxDev-C++ event names and wxWidgets equivalents
D. C Standard Libraries
E. C++ Standard Libraries

This Page Intentionally Left Blank
(Just to irritate you when you print it out)

The Boring Bit

Introduction

The first question any child will ask you is why and it is a good question (except after the
thirtieth time of being asked). The sun is blazing down; it’s a 1000 outside, so why am I
indoors writing this book?

The main reason is because many people have asked on wxForum if a book on wxDev-
C++ is going to be written. So far a few tutorials have been produced and there have been
various mutterings about books. That answers the question as to why I am writing this
book. But not why I am writing this book.

For me wxDev-C++ is something very special. It all goes back to July 1999 (queue the
flashback and misty camera lenses). As per usual I brought a computer magazine, just
one in a huge pile of magazines, but this one was special. On the cover disc was
Championship Manager 3, but being a geek I was not interested in this. Rather I was
taken by the small box in the corner saying ‘Bloodshed DevC++, Free C and C++
environment’. A whole new world was opened to me, the world of C and C++ up to then
I had only programmed in Basic and Visual Basic. I was also introduced to the amazing
world of Open Source Software.

Figure 0.1 – Dev-C++ circa 1999

I rushed home from work and installed this program, it was very basic and rather ugly,
but I didn’t notice. I opened one of the samples, pressed compile and got greeted by a
message that this program could not be compiled, then the IDE (Integrated Development
Environment) crashed. Undeterred I reloaded DevC++ and another sample and this time
it compiled. It was just a basic window with a button in it, but to me it was a miracle. I
thought Colin Laplace godlike to produce this program for free and give it away. In the
years that followed I continued to use DevC++ and watched it grow from an ugly,
unstable program, to an IDE reminiscent of Microsoft Visual Studio which fulfilled most
of my programming needs. I am not alone, today DevC++ is still the most download
development application on SourceForge.

Figure 0.2 – DevC++ in a more recent guise

However I also used another IDE this time from Borland called C++ Builder. I loved the
ease of use in creating GUIs in seconds. I could see what they would look like before I
compiled and I could alter things in seconds that would take lines of code to create and
change. I was torn between DevC++ and C++ Builder until I joined a project called
‘SkinDoc’ on SourceForge in 2005. This project was headed by a programmer known as
Nuklear Zelph and was being developed using an application which had slipped past me
called wxDev-C++. Basically it was a visual designer built on top of DevC++. I
downloaded it and found the answer to all my programming desires.

Well not quite, wxDev-C++ is a great piece of work; many skilled programmers have
spent and continue to spend a lot of time in creating and improving it. But it is also a
work in progress, as a result it has a few rough edges. It is also similar to and yet
sufficiently different to other IDEs that some parts of it maybe tricky for newcomers to
use. I floundered around until I discovered the tutorials available on the wxDev-C++
home site and later discovered wxForum. wxDev-C++ also suffers from a major
drawback. The original DevC++ was a paradox in that it was a C/C++ IDE written in
Delphi Pascal. wxDev-C++ continues this tradition and as such programs developed with
the form designer don’t always match the compiled program. It is an example of a

WYSINAWYG (What You See Is Not Always What You Get) application, some of this
will improve with time, but I doubt it will ever be a perfect match.

This book then is written with the experience I have gained, the experience of other users
on the forums and in the hope that it will be useful. Some of it will no doubt be out of
date quite soon as wxDev-C++ continues to improve, but this book will reflect these
changes as it grows alongside the IDE.

Sof.T

History of wxDev-C++

In 1983 Richard Stallman announced the GNU project. This project aimed to provide a
‘free’ unix operating system with comparable tools. The well known GCC compiler was
created by Richard Stallman as part of this project.

In 1992 Julian Smart began a project called wxWindows, which in 2004 changed its
name to wxWidgets due to pressure from Microsoft. This project was designed to
produce an Open Source cross platform GUI library, which used each platform’s native
widgets.

In 1995 Steve Chamberlain began the Cygwin project after noting that GCC contained a
large number of features which made it practical to port to Windows. Other programmers
joined the project and helped expand the Cygwin package.

Originally a fork from Cygwin came the MinGW (Minimalist GNU for Windows)
project. This provided the tools and Windows headers for development on the Win32
platform.

Around 1999 Colin Laplace released the first version of Dev-C++. Using the MinGW
compiler, it provided a minimal IDE. As other developers joined in, they helped expand
Dev-C++ into an IDE which now resembles Microsoft’s Visual Studio.

2003 Guru Kathiresan created a stand alone visual form designer in Delphi. Although it
had limited functionality it was able to create basic applications.

In 2004 Guru Kathiresan incorporated the visual form designer into Dev-C++. The
resulting application was renamed wxDev-C++ and became a RAD tool similar to Delphi
or Visual Basic. Many other developers have joined in and this tool continues to improve.

Who This Book Is For

In order for this book to work it will need to address a wide range of audiences. From
those who have never programmed in C++ to those who are competent, but have never

used wxWidgets, and those who are comfortable with both, but looking for an extra
nugget of information.

This diverse range of prospective readers has influenced the shape of this book, experts
will not want to wade through a basic primer on C/C++ programming, and beginners will
not want to create GUIs that do nothing because they can not create the code to back it all
up. As a result the book is divided up to allow users to skip directly to the section they are
interested in.

Section one

This section deals with installing wxDev-C++, coding in C and C++, and the DevC++
part of wxDev-C++.

Section two

This section deals with GUI creation using wxDev-C++. It goes into wxWidgets and how
the two work together.

Section three

The final section covers advanced topics, for users who want to do more than create using
the standard controls.

Each section ends with a selection of FAQs related to that section.

Acknowledgements

Thanks to Peter James for volunteering to carry out the role of proof-reader. His edits and
additions are greatly appreciated and have helped to considerably raise the quality of this
book. Malcolm Nealon has also added some valuable improvements, as well as correcting
at least one major mistake. Thanks also to Greg Newman for pointing out changes in the
latest version of wxDev-C++.

Thanks also to the developers of wxDev-C++, especially Joel Low and Tony Reina for
the time they have taken to respond to my questions.

Part 1

C / C++ Programming with

wxDev-C++

Chapter 1 – Downloading, Installing and Updating wx Dev-C++

Introduction

This chapter is aimed at all users. I have deliberately pitched the level of explanation to
users who rarely or never install and uninstall programs. Advanced users may be irritated
by the number of screenshots and the overly precise instructions. If this is you then just
skip past this section or perhaps lightly skim it for information that is new to you.

A question that many have asked is if wxDev-C++ is available on platforms other than
Windows. The short answer is no. However the good news is that any code you produce
with wxDev-C++ can be compiled on other platforms. For more information check the
FAQ at the end of Part 1 or visit http://wxdsgn.sourceforge.net/faq.php .

Downloading wxDev-C++

The wxDev-C++ project is hosted on SourceForge and this is the place to go to download
the latest official version (There are other versions, but we will cover those later). So for
now make sure you are connected to the Internet and open your web browser. To go to
the official wxDev-C++ website enter the URL http://wxdsgn.sourceforge.net.

Figure 1.1 – The Official wxDev-C++ website [Accessed 1/11/2006 at 7:55A.M.]

On the navigation bar on the left you will see the link to Downloads. At present there are
two different links one to wxDev-C++ and the other to wxDev-C++ for VC. The first
version uses the open source compiler Mingw only but the other version can also use
Microsoft’s Compiler. Soon both these versions will be merged.

Click on the wxDev-C++ 6.10 option.

Figure 1.2 – Selecting a version of wxDev-C++

Clicking on the link labelled ‘wxDev-C++ 6.10’ will take you to the SourceForge
download page. This page contains a list of mirror sites from which you can download
the setup file.

Figure 1.3 – SourceForge download page for wxDev-C++

Now choose a mirror site that is closest to your home location. For me this is Kent, U.K.
To the right of the mirror site name, is a link in blue labelled “Download”.

Click on this link to access the download page from the mirror site.

The page will reload using that mirror and the download will start immediately.

NOTE: In Internet Explorer Windows XP Service pack 2, the download may be

blocked. In which case it is necessary to click on the header and select
‘Allow download from this site’.

The next thing you should see is the download dialog box. This will differ from one web
browser to the next, but all should contain the same basic options to either download the
file or run it. If you choose the [Run] option, the setup file will download and run
automatically once downloading is complete. If you choose [Save] the setup file will be
saved onto your computer for you to run when you wish.

 Click on either of the [Run] or [Save] buttons.

Figure 1.4 – Internet Explorer’s file download option box

Figure 1.5 – Firefox’s file download option box

In my case I chose [Save] since I prefer to keep the setup files on hand should I need to
uninstall/reinstall or install on a different computer. So click on either the [Run] or [Save]
to continue.

Figure 1.6 – Choosing a location to save the setup files in.

Once you have chosen to [Run] or [Save] the file, the download should begin. Depending
on your Internet connection this is either time for a quick cup of tea or a quick stretch.
(As the following dialog shows this download was approximately 47.5Mb in November
2006)

Figure 1.7 – The setup file downloading

Installing wxDev-C++

Once the file has downloaded, if you chose to run the file the installation program will
start automatically, if not you need to browse to where you saved the file and:

 Either double left click on the file name to run it.
 Or right click and choose ‘Open’.

Figure 1.8 – Running the setup program

The next thing you should see is a warning box telling you not to install this program
over an existing installation. This is an important warning as many people have found.
Failure to heed these instructions can result in a broken installation which looks okay but
gives you endless headaches (not unlike cheap cider). See the section Updating wxDev-
C++ later in this chapter for further details.

Figure 1.9 – The initial warning message from wxDev-C++ setup

The next dialog displays the language selections used during the install. Personally I stick
with the default English since I have trouble understanding anything else.

Select your language and then click [OK].

Figure 1.10 – Choose a language option dialog

The next option marks a change from previous versions of wxDev-C++. Since this
release offers support for more than one type of compiler, it offers you the choice of
which compilers you wish to use.

Check the boxes next to the compiler you wish to use. Then click [Next>]

Figure 1.11 – Choosing which compilers you wish to use

Although wxDev-C++ is free, to use it you must agree to the provisions of the license
agreement. The license used is the GNU GPL (General Public Licence) Version 2. It is up
to you to either read through all of it, or skip it.

Click on [I Agree] to continue any further.

Figure 1.12 – The license agreement dialog

The next dialog offers you the chance to choose which components you wish to install.
Personally I keep to the defaults, but it is worth scrolling through the list of components
to get some idea of what is included in the distribution. The top combo box labelled
‘Select the type of install’ gives you an option of full, minimal and custom install. Use
the minimal install if space is at a premium on your computer.

You will notice that the first two choices are grey this is because they are required to
actually install something of use. If you use another IDE (not that you would) and you are
only trying wxDev-C++ then you may wish to uncheck the option to associate files with
wxDev-C++. Likewise if you didn’t make the change on last screen this is your last
chance to choose which compilers you will support and load the libraries for those.

Make your choices and then click on [Next >] to continue.

Figure 1.13 – The component choice dialog

The Start Menu option dialog gives you the option to choose where wxDev-C++ appears
on your start menu Again this is a personal choice I like to group similar types of
program together so I change this option to ‘Programming\wxDevCpp’.

Make your choice and then click [Next >] to continue.

Figure 1.14 – Start menu location option dialog

The Install Location dialog provides the option of setting the wxDev-C++ installation
location. This is one default I usually stick with. Previously this used to be ‘C:\Dev-Cpp
due to the fact that DevCpp could not handle spaces in the file path when compiling
programs. However due to the hard work by wxDev-C++’s developers this is no longer
the case. Hence the default is now ‘C:\Program Files\Dev-Cpp’. Just one of the many
improvements in this release.

Breathe in once and click on [Install].

Figure 1.15 – Choose an install location dialog

While the next dialog fills with the names of all the files being installed you will have
time for another brief break.

Figure 1.16 – File Installation dialog

Halfway through the file installation, the following dialog will pop up. If you want an
entry for wxDev-C++ on the start menu for all users on your computer then select [Yes],
otherwise select [No]. I select [No] since the other users of my computer don’t want me
messing up their environment for them.

Click on either [Yes] or [No] to continue.

Figure 1.17 – Install for all users dialog

More files will scroll past. Soon wxDev-C++ will finish installing all the files it needs.

Now click [Next] to continue.

Figure 1.18 – File Installation dialog upon completion

This will lead you to the Completing Setup dialog. Untick the check box labelled ‘Run
wx-Dev-C++’ if you don’t want wxDev-C++ to run when you exit the wizard. Equally
untick ‘Read Sof.T’s wxDev-C++ Programming Manual’ if you don’t want to read this
book.

Preferably leave ‘Run wx-Dev-C++’ checked and continue following these instructions.
If you don't, the next time you run wxDev-C++ you will need to complete the next steps.

Click [Close] to exit and cheer loudly.

Figure 1.19 – The completion of the setup dialog

When wxDev-C++ is started up for the first time you will currently be greeted with the
beta warning dialog. This will be absent on later full release versions. Read it or not as
you wish.

Click [OK] to continue.

It is worth remembering that bugs can be posted as you find them. This feature enables
Open Source software to continue improving and gives you something better to do than
just cursing the programmers when the application crashes. The other point to note is that
of updates, which is covered in detail later in this chapter, in the section ‘Updating
wxDev-C++’.

Figure 1.20 – The beta dialog

You are now presented with various options to customize your version of wxDev-C++.
This is the same introduction as the standard version of DevC++. Here you can choose
your preferred language. As mentioned earlier I stick with English. You can choose
between 3 different icon themes, (I prefer New Look) and choose whether or not to
support XP Themes.

Make your customisation choices and click [Next] to continue.

Figure 1.21 – Configuration Dialog

Next you have the option to enable code completion. Choose ‘Yes, I want to use this
feature’. The visual designer in wxDev-C++ relies on the code completion feature to
automatically create events for you. While code completion can be annoying when it
seems to get in the way, it is also a great source of information, and helps avoid typo
errors.

Click on [Next] to continue.

Figure 1.21 – Enable code completion dialog

The second part of the code completion feature asks if you want to create a cache.
Basically this scans through all the .h header files in your include directory and builds a
list of functions, etc. Later when you are programming code completion uses this cache to
prompt you or to complete the code.

Select the option ‘Yes, create the cache now’.

Click [Next] to continue.

At this point, unless you have a very fast computer, go and put the kettle on and brew a
coffee.

Figure 1.22 – Code completion cache creation dialog (try saying that fast)

Drink your coffee and continue waiting. It does end eventually I promise.

Figure 1.23 – Yep still waiting, nearly finished that coffee though

Hooray we have made it to the final dialog. Read or not as you wish and:

Click [OK] to complete the installation process.

Figure 1.24 – Phew the final dialog

After a short pause the IDE will appear, followed by the tip of the day window.

Updating wxDev-C++

Updating wxDev-C++ is a fairly simple procedure as long as you remember that dialog
box that appeared during the install saying ‘Please do not install this version of wxDev-
C++ over an existing installation’. For old hands at windows this will be a simple
procedure, but just in case you are not sure, here is how to proceed.

 As always click on the [Start] button on the toolbar.
 From the pop-up menu select the ‘Settings’ menu
 Click on ‘Control Panel’
 (or on WindowsXP click direct on the option ‘Control Panel’).

Figure 1.25 – Getting to the Control Panel (Windows 9x)

The Control Panel will pop up with various options.

You need to select Add/Remove Programs.

Figure 1.26 – Selecting Add/Remove Programs

The Add/Remove dialog will appear. Depending on how many programmes you have
installed on your computer, it may take a few seconds to fill the dialog. When it appears
scroll down the list until you get to wx-devcpp. Select this option; once it is highlighted
the Add/Remove button will become activated.

Click the [Add/Remove] button to continue.

Figure 1.27 – The Add/Remove Dialog

The next dialog shows the location of wxDev-C++ and you need to click ‘Uninstall’ to
continue.

Click the [Uninstall] button to continue.

Figure 1.28 – Uninstall dialog

A list of files is displayed as they are uninstalled.

Figure 1.29 – wxDev-C++ being uninstalled.

Finally the following dialog will pop up. If you have spent a lot of time configuring the
IDE to your own preferences, you may which to keep the configuration files.

 Click the [No] button to keep your configuration files
 or
 Click the [Yes] button to delete your configuration files and revert to the default.

Figure 1.30 – Remove configuration files dialog

At last, the final dialog. Since I personally keep my projects in C:\DEV-CPP, I leave this
directory alone. It is safe to leave this directory to install your new version into. Or delete
it. As ever, the decision is yours to make.

Figure 1.31 – The final dialog

To install the latest release from the site on Sourceforge follow the instructions in the
prior section ‘Getting wxDev-C++’.

Advanced Users

For advanced users there is the option to try the latest cutting edge versions of wxDev-
C++ alpha builds. These builds show features that may make it into future versions of
wxDev-C++. There are two sites to try these from, Tony Reina’s site and Joel Low’s site.
Both are accessible from the wxDev-C++ home page under ‘Alpha builds’ on the side
navigation bar.

Figure 1.32 – Link to alpha build of the wxDev-C++ IDE

Below is the title page for Tony’s site. Tony generally has various versions of wxDev-
C++ available.

Figure 1.33 – Tony’s wxDev-C++ page

Click on the link to wx-devcpp Testers (alpha versions). And it will take you to the
following page. You will want to grab the devcpp.palette as this adds the latest controls to
the widget palette in the IDE. The dates alongside the files give some indication as to
which are the latest. Click on the one you are interested in. Save it the location where you
installed wxDev-C++ (This is ‘C:\Program Files\Dev-Cpp’ if you accepted the default
location).

Figure 1.34 – Tony’s list of wxDev-C++ versions

When it has finished downloading browse to C:\Dev-Cpp and rename the file devcpp.exe
to something else like devcpp.exe.backup. This makes it available to change back if the
new version is too unstable. Now find the file you downloaded and rename this to
devcpp.exe. You can now start wxDev-C++ as normal.

Joel’s page on the other hand has links to alpha versions in binary only or installer
packages. He also lists links to various prebuilt wxWidgets libraries. These are also
available via web update. See the next section for more details.

Figure 1.35 – Joels’s list of wxDev-C++ versions and packages.

The latest CVS version should be located at
http://home.wanadoo.nl/m.nealon/devcppcvs.exe . Which gives you another option to try.

Adding Extra Packages

Somewhere during the development of DevC++ someone decided that it would be good
if users could add to the libraries they used and update the IDE. The first version of this
updating mechanism was called VUpdate. However this was eventually scrapped and
DevC++ moved onto a new system called Web Update. This allows the user to download
newer versions of DevC++ as they are released and to download DevPaks. DevPaks are
file packages which contain many different things from help files to extra libraries. Since
wxDev-C++ is based on DevC++ it uses the same Web Update feature, but as a result
there are some pitfalls to watch out for as we will discuss later.

Firstly let us look at how to add extra libraries to our new installation of wxDev-C++.

 If wxDev-C++ is not already running, start it up.
 From the ‘Tools’ Menu select ‘Check for Updates/Packages…’

Figure 1.36 – Check for updates from the tool menu

This will activate the Web Update application. Make sure you are connected to the
Internet before proceeding any further. At the top of the dialog is a drop down listbox
labelled ‘Select DevPak server’.

 Click on the arrow to reveal a list of servers (Currently only there are three, only
one is dedicated to wxDev-C++).

 Select 'Dev-C++ primary devpak server'.

Figure 1.37 – Selecting a DevPak server

Once you have selected the server:

 Click the [Check for updates] button at the bottom of the dialog.

After a short pause the main part of the dialog should be filled with a list of updates you
can download.

From left to right the list tells you the name of the update, the version number of the
update, and, if you already have this file installed, the version number of the installed file.
This saves you from downloading and installing out of date versions. Next follows the

size of the file which can be handy on limited bandwidth connections. Finally the file
creation date gives you some reference point on whether the file is up to date or not.

 Click on the check box next to the file name to select files for downloading.
 To activate the download, click on the [Download Selected] button.

 Note the warning below....At this point all files with a green check next to them
will be downloaded.

Figure 1.38 – Selecting libraries to download.

WARNING: Remember this system is used to update DevC++ as well as wxDev-C++.

The following image shows a new version of DevC++ that can be
downloaded. Do not download this or you will lose the visual designer part
of DevC++.

 Problems can also arise when downloading versions of wxDev-C++ that

are marked Alpha. Alpha versions may be less stable than your current
version or remove some features.

 Equally do not download libraries called wxWindows, this is the old name

for wxWidgets and will cause you a headache. Finally be wary when

downloading versions of wxWidgets libraries, if they are compiled with
different or bad options they can break a healthy installation. It is safest to
download from the wxDev-C++ server.

Figure 1.39 – Careful not to download updates of DevC++

When your files have finished downloading either they will be installed quietly as in the
case of WebUpdate Mirrors, or the following dialog will popup.

Figure 1.40 – Installing updates dialog

Clicking ‘OK’ starts up the installation part of another application called PackMan. No
this is not a small yellow ball with a big appetite, it is the Devpak manager. Here you can
choose either [Install >] or [Cancel]. Most frequently you will want to install.

Figure 1.41 – Installing the new package.

You have now installed your new package. You will find that it may have added new
templates to your New Project dialog, new help files to your system or even new libraries
to play (or work) with.

Package Maintenance
But what if you wish to remove a package you downloaded? Or to check what packages
you have available. This is all possible from within PackMan.
To do this

 Select ‘Package manager’ from the ‘Tools’ menu.

Figure 1.42 – Checking your packages

Once PackMan starts it lists all of the available packages. As you click on each one, the
panel on the left alters to tell you the package name, the version number, a brief
description and a reference website. If you click on the tab next to ‘General’ on the left
called ‘Files’ it will list all the files contained in this package.

Figure 1.43 – Controlling your packages

It is also possible to install and remove packages from here.

The above procedure is not the only way to get and install new devpaks. It is possible to
download devpaks from various websites. To get some idea of the variety available, type
‘devpak’ into google and run a search. One of the sites returned will be Devpaks.org. You
may remember seeing this name on the drop down list on Web Update. Devpaks.org is
one of the largest sites for locating devpaks.

Figure 1.44 – The home page for Devpaks.org

The packages are listed under various categories. It is quite possible to download devpaks
from here. Once downloaded you can run the files or browse to them and double click
them. If wxDev-C++ has been properly installed this will automatically start the
installation wizard you saw earlier.

Other smaller sites exist for wxDev-C++ related devpaks. Such as the one mentioned on
the forum shown below. This site can be located here http://mirror.cdhk.de/wx/

Figure 1.45 – Announcement of a new wxDev-C++ devpak site

Other devpaks are available such as these from NinjaNL

http://home.wanadoo.nl/m.nealon/wxWidgets-2.6.2.DevPak
http://home.wanadoo.nl/m.nealon/wxWidgets-2.6.2contrib.DevPak
http://home.wanadoo.nl/m.nealon/wxWidgets-2.6.2contrib.DevPak

Advanced Users

Advanced users may be interested to know where the devpaks are stored that are installed
by PackMan. The answer is in your wxDev-C++ installation directory in the folder called
packages. Why is this of interest?

I run three different installations of wxDev-C++, one on my home computer, one on my
laptop and one on a virtual vmware install of Windows which I use to test on. Instead of
repeatedly downloading and installing the packages, I install a package once on my main
computer and then install on the other machines by copying the .devpak files across and
then using the [Install] option in Packman.

Figure 1.46 – Local versions of the installed DevPaks

Chapter 2 – Compiling your first program

Introduction

So you have your new IDE installed and upgraded as you wish. So what to do with it?
This chapter will deal with how to open existing projects and how to create and save your
own projects.

Instead of drowning you in screenshots this chapter will start using certain conventions
listed below.

Menus

When you see in the text a line like

File|New|Project

it means go to the File menu on the menubar at the top of the IDE. Select ‘File’ by
clicking on it, move down to the option ‘New’ and select ‘Project’ from the pop out
menu. This is shown below.

Figure 2.1 – Demonstration of File|New|Project

Keyboard Shortcuts

When you see instructions like press <Ctrl><F9>, this means to hold down the key
labelled ‘Ctrl’ on your keyboard and while holding it press the key labelled <F9>. There
are three types of combination keys ‘Ctrl’, ‘Shift’ and ‘Alt’. Both ‘Ctrl’ and ‘Alt’ can be
found on the bottom of the keyboard. ‘Shift’ can be found on the left and right-hand sides
of the keyboard. Keys beginning with ‘F’ can be found on the top row of the keyboard
and are known as Function keys. For more information regarding keyboard shortcuts in
wxDev-C++ see Appendix 1.

Onscreen Buttons

When you see instructions like press [Close], this means to locate the button onscreen
with the text ‘Close’ on it and click this with your mouse. This is demonstrated in the
following screenshot.

Opening an existing project

DevC++, and therefore wxDev-C++, comes with a number of example projects to
compile and play with to aid your learning. We will start by opening and compiling one
of these projects.

Ensure wxDev-C++ is running. If the tip of the day window is displayed, close it by
clicking [Close]. Now go to:

 File|Open Project or File

 This will open the ‘Open File’ dialog. Depending on where you last opened a file this
dialog will display that directory. This dialog displays differently on other platforms so
don’t worry if yours looks different to mine.

Figure 2.2 – The Open File dialog

The sample we are about to use is stored in the \Dev-Cpp\Examples folder so you need to
navigate to it either using the folder list box (the one with the 'Look In' prompt) or by
using the 'Up One Level' icon. (If you installed wxDev-C++ in the default location then
the whole path will be ‘C:\Program Files\Dev-Cpp\Examples’). You should see the
following list.

Figure 2.3 – The examples supplied with DevC++/wxDev-C++

Open the folder ‘Jackpot’ and examine its contents. You should see the following list of
files. The one we want to open is called ‘Jackpot.dev’. Either:

 double click it to open it
 or select it and press [Open].

Figure 2.4 – The selecting a .dev project file

The .dev file contains various project settings. This includes things such as the names of
the files used in the project, options for the compiler, version numbers etc. Later on you
will learn how to alter all the settings which are included in this file.

Now you have opened the .dev file you are returned to the IDE. The tree control on the
left displays all the files included in this project, when the 'Project' panel has the focus.
For this project there is only one file called ‘main.cpp’.

 Click on 'main.cpp' to open it in the IDE.

Figure 2.5 – The list of files included in this project

The file will open in the IDE. What you are looking at now is called the ‘Source Code’.
You will notice that different line and parts of lines are in different colours. This is called
‘Syntax Highlighting’ and enables you to easily distinguish different parts of the source
code at a glance. The colouring used by the syntax highlighter can be configured to suit
your preferences so don’t worry if your colouring differs from mine.

Looking at the image below you will see the top three lines are coloured green. The lines
begin with ‘#’ and are known as ‘Preprocessor’ lines. We will deal with the Preprocessor
in more depth later.

Next you will see that certain words are shown in bold print. These are ‘Reserved
Keywords’. Reserved Keywords are words that are part of the programming language and
which you cannot use for your own purposes. You will also notice that they are all in
lower case. C and C++ are case sensitive languages, so 'Save' and 'save' are different.

Parts of lines beginning and ending with ‘ ” ’ are known are ‘String constants’ and are
coloured red. Number constants are shown in purple.

Finally lines beginning with ‘//’ or beginning with ‘/*’ and ending with ‘*/’ are coloured
blue. These are comments. Comments are there for you and other human readers to help
understand the meaning of the source code. The compiler takes no notice of comments,
so use them more than you think you need to. When you come back to a tricky piece of
code in a years time, well placed comments will dictate how long it takes to understand
the code.

Figure 2.6 – Syntax highlighted source code.

We won’t spend any time now trying to understand what all this means, because now is
the time for you to compile your first program. To compile means to pass the human
readable (I promise you will be able to read and understand this later) source code to a
program called a compiler. The compiler then translates this into binary code
understandable by a computer. Once the programme has finished compiling, providing it
finds no errors in it (See Debugging with wxDev-C++), you can run it.

There are a number of ways to compile the program but the quickest is to press
<Ctrl><F9> (See the introduction for more details). Alternatively you can use the menu
option Execute|Compile or you can press the compile button on the toolbar.

Figure 2.7 – The compile button

The compile dialog will popup next. Depending on the size of your project this next part
many take a while, but for this program it will take a second or so. When the compiler
has finished the [Cancel] button will change it’s caption to [Close].

 Click on the [Close] button.

Figure 2.8 – Compiling.

You are now back at the IDE, so what happened? Where is your new program? Don’t
worry we have only built the programme, so now we need to run it. This can also be done
from with in the IDE. Once again you have several options:

 Press the keyboard shortcut <Ctrl><F10>.

Or select 'Run' from the menu Execute|Run.
 Or use the [Run] button on the toolbar.

Figure 2.9 – Running the program

Hey presto, your new program is up and running. Play with it for awhile. The object of
the game is to guess the number the computer has chosen between 0 and 30. When you
are bored press any key and then <Enter> to exit the programme .

Figure 2.10 – The jackpot game

So far so good, but wouldn’t it be nice to compile and run the programme all in one go?
Well don’t be so lazy ☺. But in case you are and all the best programmers are lazy
(actually just interested in saving time when doing repetitive tasks). You can compile and
run using one of the following methods:

 Press <F9>.
 Or Execute|Compile & Run from the main menu.

Or use the Compile & Run button on the toolbar.

Figure 2.11 – Compiling and running in one step

Congratulations you have not only learnt to open projects, but also how to compile and
run them in one step therefore doubling your productivity. (For the male audience, who
said ‘Men can’t do two things at once?’).

Creating your own project
So you have finished playing Jackpot and you are ready to move on. This chapter was
called Compiling Your First Program. You have now compiled a programme, but not
your own, so let us move on and do just that.

There are two ways of creating a new project:

 From the menus select File|New|Project.
 Or from the toolbar, select the ‘New Project’ button.

Figure 2.12 – The new project toolbar button

Either of these methods will provide the New Project dialog. Depending on what
packages you have installed on your system this will differ accordingly. You may have
more or less tabs and more or less options on each tab.

Figure 2.13 – The new project dialog.

Among the options visible on this tab should be ‘Console Application’. If you have many
options here you may need to scroll down until you find it.

 Click on the 'Console Application' icon.

The window labelled ‘Description:’ should now alter to give you a basic description of
this project. In this case it will say ‘A console application (MSDOS window)’. The other
options shown in this dialog are the project name.

Type ‘MyHelloWorld’ in the name field
leave the other settings as they are

 press the [OK] button.

Figure 2.14 – How the New Project dialog should look

If you already have a project open a dialog will popup asking you if you really want to
close this project and start a new one. Select ‘Yes’. If you have any unsaved files you will
be prompted to save them.

Next you will be presented with a dialog asking where to save the project file. Personally
I browse to c:\Dev-Cpp and there I create a new folder called Projects (if it doesn’t
already exist) by clicking on the [Create New Folder] button.

Figure 2.15 – Creating a new folder

The new folder will be created and you will be able to edit the name.

Change the folder name to ‘Projects’, this folder will become our main store for all
future projects.
Access the 'Projects' folder by double clicking the folder name.
Create another new folder, this time call it ‘MyHelloWorld’. (For safety’s sake
don’t leave any spaces in the name since Dev-C++ reportedly has problems with
spaces in file names.)
Access the “MyHelloWorld” folder by double clicking the folder name.

Figure 2.16

The filename is already filled in from the name you chose for the project in this case
‘MyHelloWorld.dev’ so just press ‘Save’.

The project file will be saved and the IDE will display a basic source code file like the
following.

#include <cstdlib>
#include <iostream>

using namespace std;

int main(int argc, char *argv[])
{
 system ("PAUSE");
 return EXIT_SUCCESS;
}

Again I will not go into details about what all this means as we cover this in the next two
chapters. Instead alter the source code to the following, making sure you change the
string constants to your own words.

#include <cstdlib>
#include <iostream>

using namespace std;

int main(int argc, char *argv[])
{
 //Change the text Your name goes here to your n ame
 cout << "Hello my name is: " << "Your name goes here" << endl;
 //You can change the text between the quotes to describe yourself by day
 cout << "Mild mannered reporter by day" << endl;
 //You can change the lines between the quotes t o describe your super self
 cout << "Caped crusader by night" << endl;
 //This line pauses the program, try putting // in front of it to see what
 //happens
 system ("PAUSE");
 //This line says that the program has terminate d normally, ie not crashed
 return EXIT_SUCCESS;
}

 Press <F9> to compile and run your first program.

A pop up dialog will prompt you to save your source code. Check that the directory
shown at the top next to the label ‘Save in:’ is our project directory, in this case,
‘MyHelloWorld’. wxDev-C++ will automatically have titled the source code file
‘main.cpp’. The ‘.cpp’ extension tells the compiler and us that this is a C++ source code
file, not C or any other language. You can change the name (but not the extension) if you
wish, but I would leave it as is and press the [Save] button. Immediately the compiler will
start and a second or so later the program will run. If you made the changes suggested
they will be displayed on the screen.

Figure 2.17 – Output from MyHelloWorld program.

Congratulate yourself, you have just successfully written and compiled your first
program. Welcome to the rank of C++ programmers. But to become more proficient
study the next two chapters.

Chapter 3 – Basic C Programming

Introduction

In 1972 Dennis Ritchie wrote the C programming language for use on the unix operating
system. In 1978 Kernighan & Richie wrote ‘The C Programming Language’, this
provided a semi standard C known today as K&R C. In 1983 the ANSI (American
National Standards Institute) created a standard definition of the C language. This was
completed in 1988 and is known as ANSI C. This more or less makes K&R C obsolete
although you may come across it from time to time. Since then the ANSI committee have
produced a newer standard of C known as C99, the older version being known as C89.
C99 adds a few necessary features and borrows a few from C++.

Neither this nor the next chapter are designed to teach you how to design programmes,
which is a topic which could fill several more books (and start a few minor wars as well).
Neither are they designed to teach you the C and C++ languages in depth. That is the
place of a whole shelf full of books.

These two chapters will skim through the basics of these languages and by means of
examples give you a slight grounding in these. There are many excellent books on these
topics and several excellent websites. (Refer to learning resources in appendix yy)

WARNING: C and C++ are called ‘Case Sensitive’ languages. This means that ‘printf’

is not the same as ‘PRINTF’ or ‘Printf’. Other languages are not so strict
and this can cause problems for newcomers from such languages.

Break down of a simple example

To start with we shall look at a basic example of a C language source code file. We shall
create this in wxDev-C++ and compile it to see what it does. Next we will break it down
to see how it does what it does.

To begin the process:

• Ensure wxDev-C++ is open
• Create a new project (as in the previous chapter)
• Select the 'Console Application' option.
• Select the project option 'C Project'
• Name the project 'SimpleC'

Figure 3.1 – Project settings for the SimpleC program

 Click the [OK] button and you will prompted to close any open projects, then
 to save this project:

Browse to the Project folder we created earlier and create a new folder inside it called
“SimpleC”.

 Open the 'SimpleC' folder and save the project file.

You will be returned to the IDE with the following freshly generated code

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

 system("PAUSE");
 return 0;
}

Firstly to make it a little easier to know which lines I am referring to, let us turn on the
line numbering feature in wxDev-C++.

 Select the main menu option: Tools|Editor Options.

On the Editor Options dialog:

 Click on the second tab labelled 'Display'
 Click on the check box next to 'Line Numbers'

Figure 3.2 – Displaying line numbers

Alter the code to match the following

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 #define TOP_MAN 2
5 #define THE_PRISONER 6
6
7 int main(int argc, char *argv[])
8 {
9 int i = 0;
10
11 printf("Who are you?\n");
12 printf("I am the new number %d, " , TOP_MAN);
13 printf("You are number %d\n\n" , THE_PRISONER);
14
15 for(i = 0; i < THE_PRISONER; i++)
16 {
17 printf("Thinking...\n\n");
18 }
19
20 if(i == THE_PRISONER)
21 printf("I am not a number, I am a free man!\n");
22
23 system("PAUSE");
24 return 0;
25 }

 Press <F9> to compile and run the program.

You will be prompted to save the source code file, save it in the same directory as the
project file. You should be greeted with the following output.

Figure 3.3 – Output from the SimpleC program

I am now going to break this example down into various parts which I will discuss briefly
here and then in greater depth in the following relevant sections.

The C programming language has only 32 keywords (listed in Appendix B). None of
which include the provision to output to the screen. Before you say ‘But wait a minute, I
just wrote a program which output a lot of nonsense to the screen’, let me explain. What
C lacks in keywords it makes up for in libraries. ANSI C has a large number of libraries
containing functions of various purposes. The function printf is one of these.

Before we can use these functions we need to tell C that we wish to make use of the
library containing that function. We do this using #include statements. We can see
examples of this in lines 1 & 2. All lines beginning with # are called ‘Prepocessor Lines’
and we will deal with these in the section ‘Preprocessor’. There are also two more
examples in lines 4 & 5, these lines begin with #define and create constant values.

As we have mentioned, C is made up of functions. Later on, in the section 'Functions',
you will create your own functions to get a better feel for them. C demands that there is at
least one function present in every programme and that is the main function. A function
consists of a function header and a body section enclosed by curly braces {}. The code
enclosed within the braces on lines 8 & 25 are in what is known as the ‘body’ of the
function.

Values can be stored in variables, there is one declared on line 9. The first part int is a
keyword and tells us that the variable will store an integer. An integer can only contain
whole numbers. We give the variable a name ‘i’ so we can refer to it later, as in lines 15
& 20.

WARNING: In C when a variable is created it can contain any value, so it is best to

assign it a known default such as line 9 where ‘i’ is assigned the value ‘0’.
Again this is a pitfall for new programmers or those from other languages.

Lines 15 to 18 are an example of a ‘Control Loop’ and will be covered in the next section
‘Basic C’ as will lines 20 & 21 which contain an example of a ‘Conditional Execution’.

The other lines will be covered in ‘Input/Output and other useful functions’.

Basic C

To store data within a C program we use variables. These are defined as in line 8 by first
stating the type of data the variable is to hold, then assigning the variable a unique name.
It is good form to initialise the variable by assigning it a value at this point.

Data types

There are 5 basic data types in C89. These are char, int, float, double and
void . char is designed to hold data values corresponding to a character. int is
designed to hold whole numbers. float and double hold floating point numbers and
void is a null value. Some of these data types can be extended with the keywords
signed, unsigned, long , and short . int can take all of these values, char
can be signed or unsigned and double can have long applied. Unsigned data
types can only hold numbers from 0 to their maximum range. Signed data data halve this
and give half the range to negative figures and half to positive figures. The C standard
specifies a minimum range for data types, but not a maximum which can vary between
compilers and platforms. The following program called DataSize demonstrates these
sizes.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(int argc, char *argv[])
5 {
6 printf("The size of a char is %d bits\n" , 8 * sizeof(char));
7 printf("The size of a unsigned char is %d bits\n" , 8 * sizeof(unsigned
char));
8 printf("The size of an int is %d bits\n" , 8 * sizeof(int));
9 printf("The size of a unsigned int is %d bits\n" , 8 * sizeof(unsigned
int));
10 printf("The size of a long int is %d bits\n" , 8 * sizeof(long int));
11 printf("The size of a short int is %d bits\n" , 8 * sizeof(short int));
12 printf("The size of a double is %d bits\n" , 8 * sizeof(double));

13 printf("The size of a float is %d bits\n" , 8 * sizeof(float));
14 printf("The size of a void is %d bits\n" , 8 * sizeof(void));
15 printf("The size of a long double is %d bits\n" , 8 * sizeof(long double));
16 system("PAUSE");
17 return 0;
18 }

Variable names

Variable names have certain limitations. The name cannot be a keyword, it must be
unique and can contain any alpha numeric characters and underscores, as long as the
name does not begin with a number.

Statement blocks

You will have noticed in the code examples so far, the use of ‘{}’ braces. These braces
enclose code within what is called ‘Statement Blocks’. The significance of this can be
seen in the next section ‘Scope’. Braces must always be used in pairs, i.e. the opening
brace { must have a corresponding closing brace} . If you have problems with
mismatched braces see the warning on under parenthesis operators.

Scope

Variables are said to have ‘Scope’ in C and you can only refer to or use variables that are
in scope. There are several types of scope. One is global scope, variables of this type can
be accessed by all parts of your programme (which may involve several source files). A
second type is file scope, variables of this kind can only be accessed by code within a
single source code file. The significance of the difference between global and file scope
will be apparent later. The last type that we will discuss is local scope. Variables declared
within statement blocks are only visible to code that is also contained within the same
block.

Operators

Operators (=,&,%,!,| etc) break down into several groups: assignment, arithmetic,
relational, logical, bitwise, pointer, reference, indexing and parenthesis are all operator
types. There are a few others which we won't discuss at all. Pointer operators will be
discussed under ‘Pointers’, reference operators will be discussed under ‘Structures’ and
indexing operators under ‘Arrays’. Bitwise operators will not be discussed at all.

Assignment Operators

The main assignment operator is ‘=’ for example int x = 0; This expression assigns
the value zero to the variable x . The value being assigned must always be on the left of
the expression, eg 0 = int x is not a valid statement. It is also possible to do multiple
assignments for example x = q = r = t = 0; In this example the variable t is
assigned the value zero, then the variable r is assigned the value of t and so on down to

x . It is also possible to declare and assign multiple variables of the same type at the same
time eg int i=0, a=5,b=10,c=15;

If you assign variables of one data type to variables of another data type, then what is
known as an ‘automatic type conversion’ takes place. When the value on the right side of
the expression is assigned to the variable on the left, an attempt is made to automatically
convert it to the data type of the left side variable. If the type on the left has a smaller
range than the type on the right then data will be lost. The following example program
demonstrates this.

Create a new project as normal.
Call it ‘TruncationAssignment’.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(int argc, char *argv[])
5 {
6 short int aShortInt= 0;
7 float aFloat = 536546.64645 ;
8 long int aLongInt= 2045654297 ;
9 /*Print the value of the long int*/
10 printf("The long int value is: %d\n" ,aLongInt);
11 /*Convert the long int to a short int*/
12 aShortInt = aLongInt;
13 printf("The long int has been assigned to a short int\n");
14 /*Print the value of the short int*/
15 printf("The value now = %d\n\n" ,aShortInt);
16 /*Repeat for a float to int*/
17 printf("The float value is: %f\n" ,aFloat);
18 printf("The float has now been assigned to a short int\n");
19 printf("The value is now: %d\n" ,aShortInt);
20 system("PAUSE");
21 return 0;
22 }

The compiler may warn you about the possibility of data loss when you do this. If you
intend to convert from one data type to another you can tell the compiler that you intend
this by using cast . For example if x is an integer then you can use this expression
float y = (float) x/3;

There are also shorthand assignment operators. Sometimes you will want to assign a
variable to itself plus or minus another value. For example x = x – 20; you can do
this in shorthand using x -= 20; ‘+=’ is also equally valid. You will see this use of
shorthand operators a lot in professional programs.

Arithmetic Operators

There are seven different arithmetic operators, the basic four:

 + for addition
 / for division

 * for multiplication
 - for subtraction

There are two shorthand arithmetic operators. These are -- and ++ which are used to
increment or decrement a variable by one. For example you can write x = x + 1; or
x++; . The shorthand operators can be used before or after a variable, for example y =
x++; or y = ++x; . You may ask what is the difference? The difference is that the first
one sets y to equal x then sets x to equal x + 1. The second sets x to be x + 1 then assigns
the result to y. A subtle but important difference.

The final operator is the modulus operator %. This can only be used with integers and it
returns the remainder of an integer division.

Relational Operators
Relational operators compare two different values and give a result of true or false (1 or
0) . The six relational operators are:

 > greater than
 >= greater than or equal to
 < less than
 <= less than or equal to
 == equal to
 != not equal to

Logical Operators

Logical operators can be used with true or false (that is 1 or 0) values. There are three
such operators:

 && AND
 || OR
 ! NOT

They give the following values according to this table.

X Y X && Y X || Y !X
0 (false) 0 (false) 0 (false) 0 (false) 1 (true)
0 (false) 1 (true) 0 (false) 1 (true) 1 (true)
1 (true) 1 (true) 1 (true) 1 (true) 0 (false)
1 (true) 0 (false) 0 (false) 1 (true) 0 (false)

Because logical operators work with true/false values they can be combined with
relational operators. For example 4>6 && 3<7 || 7!=5 .

NOTE: There is no XOR operator in C, but this can easily be created using a

function.

Parentheses Operators

C operators work on the order of precedence. This means that in an expression like the
following x = 40 + 3 / 5 + 7 * 352; does not mean that you can evaluate it from right to
left. Depending on the precedence of operators the order of calculation may be different.
To force this to be evaluated in the way you want you need to use parentheses operators
‘()’. For example x = (40 + (3/(5+(7*352)))). The innermost pair of brackets is
calculated first and then the order works outwards from that.

WARNING: Make sure that you have the same number of closing brackets as opening

brackets otherwise the compiler will issue a complaint like this:

 main.c: In function `main':
 main.c:6: error: syntax error before ';' token

 equally if you have more closing brackets than opening brackets you will

get a complaint like the following:

 main.c: In function `main':
 main.c:6: error: syntax error before ')' token

 If you are having trouble with mismatched braces you can turn on brace

highlighting. Go to Tools|Editor Options. On the dialog that appears check
the box next to ‘Highlight matching braces/parentheses’ as shown below.

 Now if you select a bracket the editor will attempt to show you the

matching bracket.

Conditional Loops
Left to its own devices, a program starts at the top and works through to the end where it
quits. Sometimes between starting and finishing you want the program to carry out the
same sequence of commands again and again. For instance you might want to print out
“Go away” 20 times until someone gets the message. You could just type in the
commands one after the other like this.

printf(“Go away!\n”);
printf(“Go away!\n”);

…

printf(“Go away!\n”);
printf(“Go away!\n”);

This might not seem too much of a hardship, but what if you wanted to do it 2000 times,
you would soon get bored of writing the same thing. It would also be hard to maintain the
code. What if you later had to reduce it to 863 times? Fortunately there is a much simpler
method called ‘Conditional looping’.

C has 3 types of loops the for loop, the while loop and the do…while loop. The
do…while loop guarantees that the contents will be executed at least once since the loop
condition is not checked until the end. The code contained in while and for loops may
never be executed since the condition is checked at the beginning of the loop, and if it is
not true the loop statement is skipped.

The for statement has this general form:

 for (<loop initialization>,<condition check>,<loop increment>)

 It is possible to make use of the ‘for ’ statement in many unusual ways, but we will only
consider the basic usage here. The ‘while ’ and ‘do…while’ loops are much simpler
since they contain only the condition check.

Create a new project called ‘Loopy’ and amend the code to the following.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(int argc, char *argv[])
5 {
6 /* Variable to check the loop condition */
7 int i = 0;
8 printf("For loop countdown to liftoff\n");
9 for(i= 10;i> 0;i--)
10 {
11 printf("%d\n" ,i);
12 }
13 printf("We have lift off.\n\n");
14 system("PAUSE");
15
16 printf("\nWhile loop count to five\n");
17 /*Reset i to 0, then try a while loop*/
18 i = 0;
19 while(i <= 5)
20 {
21 printf("Just checked condition i <= 5 and ");
22 printf("i actually = %d\n" ,i);
23 /*Need to increment i*/
24 i++;
25 }
26 system("PAUSE");
27
28 printf("\nDo...while loop count to five\n");
29 /*Reset i to 0, then try a do...while loop*/
30 i = 0;
31 do
32 {

33 printf("i = %d and " ,i);
34 /*Need to increment i*/
35 i++;
36 printf("just about to checked condition i <= 5\n");
37 } while(i <= 5);
38 system("PAUSE");
39
40 return 0;
41 }

Code analysis: On line 7 we create the counter variable i and initialize it to the value 0.
In lines 9 to 12 we create a ‘for ‘ loop. Above we have shown that the 'for' statement can
take three arguments, the initialization, the condition check and the increment.

The initialization i=10 sets our variable i to 10 and is only done once.
The condition check i>0 checks that i is greater than zero and is done on each
loop. When the condition check produces a false answer, the loop ceases.
The increment i-- decreases the value of i by 1 on each iteration through the loop

In lines 19 to 25 we create a while loop. The condition is checked before the loop runs,
and must remain true for the loop to continue running. In this case that i is greater than
or equal to 5. Line 24 increases i by one during each loop.

In lines 31 to 37 we create a do…while loop. This is very similar to the while loop,
except that the condition is checked at the end.

If the for loop contains just a single line of code then you can use the shorthand form
which leaves out the brackets. For example lines 9 to 12 could have been written as

9 for(i= 10;i> 0;i--)
10 printf("%d\n" ,i);

In this case the code executed by the for loop ends at the semicolon at the end of line
10. It is possible to escape from a loop at anytime by using the keyword ‘break ’, this
will leave the loop and begin executing the code directly after the loop.

NOTE: The while loop ends on line 25 with a ‘}’ bracket. However the

do…while loop ends on line 37 with while(); . The semicolon at the
end of the while statement is vital, if you miss it out the program will not
compile.

WARNING: All three loops altered the check condition by altering the value of i. If the

value of i had not changed the check condition would always be true and
the loop would continue for ever. To check this, delete line 35 and compile
and run the program again. To stop the program press <Alt><F2> from
within wxDev-C++ or click on the button shown.

Conditional Execution

In programming, as in life, there will be times when you want to do something and times
when you don’t. For example if it is raining you will probably want to stay in bed and
sleep. If it is sunny you probably won’t. This is called ‘Conditional execution’ and can be
achieved using the ‘if ‘ statement.

The if statement takes the form:

 if (<Check Condition>)

 Sometimes you want to do several different things depending on the value of the check
statement, in this case you can follow the if check with else if checks or an else to
do something in the event of an if check failing. Example code follows, so create a new
project and call it ‘IfBob’, then modify the code to look like the following.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(int argc, char *argv[])
5 {
6 int BobsAge = 0;
7 for(BobsAge = 0;BobsAge <= 100 ;BobsAge += 10)
8 {
9 if(BobsAge <= 0)
10 {
11 printf("Bob has not been born yet\n");
12 }
13 else if (BobsAge <= 10)
14 {
15 printf("Bob is a young boy\n");
16 }
17 else if (BobsAge > 20 && BobsAge <= 30)
18 {
19 printf("Bob is a young man\n");
20 }
21 else if (BobsAge <= 80)
22 {}
23 else if (BobsAge > 80 && BobsAge <= 90)
24 {
25 printf("Bob is an old man now\n");
26 }
27 else
28 {
29 printf("Bob has just got a telegram from the Queen\n");

30 }
31 }
32 system("PAUSE");
33 return 0;
34 }

In a group of if else statements, each condition is checked in turn from top to bottom
until a true one is found. The first true condition is executed. If none of them are true, the
code following the else statement is executed.

In the example the ‘if..else if..else ’ statements are inside a for loop to make
sure that they are all executed. As we noted earlier with for statements if a single line of
code follows the check then the brackets can be omitted.

The if statement is not the only conditional execution statement. There is a shorthand
form, (sometimes called a ternery operator since it takes three arguments) ‘?: ’ which
takes the form:

 <Conditional Check>?<Code If True>: <Code If False>

 The following short program illustrates this. Create a new project called BobsLife.
Change the code to the following.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 #define ALIVE 1
5 #define DEAD 0
6 int main(int argc, char *argv[])
7 {
8 int BobStatus = ALIVE;
9 printf("Bob is ");
10 BobStatus == ALIVE?printf("alive\n"):printf("dead\n");
11 system("PAUSE");
12 return 0;
13 }

Line 10 checks BobsStatus against the value ALIVE. If this is true the first printf
statement is executed, if not the second is executed.

The final form of conditional execution statement is the switch...case statement.
This works like a series of ‘if..else if..else ’ statements. The switch statement
can only check integer values. The switch statement contains an expression, the value of
which is checked against a list of case statements. If any of the case statements match the
code contained in the switch statement, that case statement is executed. Each case
statement ends with a break statement; if this is omitted then the code in the following
case statement is executed. The final statement is called default. This contains code to be
executed if none of the case statements return true.

The following program will demonstrate this. Create a project called DayCalculator.
Modify the code to match the following.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 #define MONDAY 1
5 #define TUESDAY 2
6 #define WEDNESDAY 3
7 #define THURSDAY 4
8 #define FRIDAY 5
9 #define SATURDAY 6
10 #define SUNDAY 7
11 #define NO_DAY 8
12
13 int main(int argc, char *argv[])
14 {
15 int day = MONDAY;
16 for(day = MONDAY;day <= NO_DAY;day++)
17 {
18 switch(day)
19 {
20 case MONDAY:
21 printf("It's Monday, off to work\n");
22 break;
23 case TUESDAY:
24 printf("It's Tuesday, long week ahead\n");
25 break;
26 case WEDNESDAY:
27 printf("It's Wednesday, halfway there\n");
28 break;
29 case THURSDAY:
30 printf("It's Thursday, one more day to go\n");
31 break;
32 case FRIDAY:
33 printf("Thank Crunchie, it's Friday\n");
34 break;
35 case SATURDAY: /*This is an example of a drop through*/
36 case SUNDAY:
37 printf("It's the weekend, let's live it up\n");
38 break;
39 default:
40 printf("Hey! This day cannot exist\n");
41 }
42 }
43 system("PAUSE");
44 return 0;
45 }

To me at least, the switch looks a little strange and 'un' C like. Watch those ‘break ’
statements, they can be the cause of major problems. Other languages like Visual Basic
have similar statements such as ‘Select ’. But in those languages the ‘break ’
statement is not required and the following statement is not executed by dropping through
as in line 35 in the above example. If in your program several statements seem to be
executed, make sure you have added the ‘break ’ statements. Remember that the default
statement will only be executed if none of the others are, or if the preceding ‘break ’
statement is forgotten.

You may wonder why ‘C’ is designed this way after all would it not just be simpler for
execution to stop at the start of the next ‘case ’ statement. Doing this would remove the
advantage of being able to execute the same code for more than one case such as in lines
35 to 37 where both Saturday and Sunday require the same output.

NOTE: You may come across statements like if(x) , what does this mean. Since

an if statement checks for true/false values if x equals 0 the if check will
fail, anything higher than 0 is considered to be true. This could be written
if(x != 0) , but this is considered bad form.

WARNING: C and C++ are unusual in that to assign a value to a variable you use ‘=’ as

in MyAge = 243; . To test for equality you need to use ‘==’ as in
if(MyAge == 243) . This is a feature that can cause many errors,
especially since this code if(MyAge = 243) will compile without the
compiler telling you there is an error. This if statement will always be
true and the code after it will always be executed.

Preprocessor
The preprocessor is an unusual feature of C. It runs before the compiler and alters your
source code by inserting function declarations from header files, expanding macro
definitions, and determining which code should or should not be compiled. Preprocessor
statements always begin with a ‘#’ and unlike C the lines don’t end with a semi-colon.

The most common preprocessor is the #include statement. This takes the form of
either #include <filename.h> for library header files or #include
“filename.h” for your own header files. As you will learn in the next section
‘Functions’, C does not allow a programmer to use a function until it knows what the
function name is, what parameters it should expect to receive, and what value the
function will return. #include statements add all that information to the start of your
source code file. In the SimpleC example we include the files stdio.h and
stdlib.h . We need stdio.h for the function printf , and stdlib.h for the
function system .

NOTE: On platforms other than Windows include file names are case sensitive

and a common error is to use the incorrect case, which results in the
compiler not finding the correct file.

The second most common is the #define statement. This is used to define a constant
name which has a value. Wherever that constant name appears in your code the
preprocessor will swap it for it’s value. This is often used for constant variables (variables
which don’t change their value). A useful feature of this is it helps to make your code self
documenting. For example you can create a define like this:

 #define DAYS_IN_A_WEEK 7

Then use it in your code:

 for(i = 0;i <DAYS_IN_A_WEEK;i++)

which makes it much easier for others to work out what you intend the code to do, than
the line:

 for(i=0;i<7;i++)

It is convention to write constant variables in uppercase.

Along with #define are #ifdef, #ifndef, #else, #endif and #undef .
These can be used to include or exclude blocks of code based on the value of a #define
statement. Code following #ifdef FRED will only be compiled if FRED has been
defined. Code following #ifndef FRED will only be compiled if FRED has not been
defined. #endif ends the code block and #undef undefines a previous #define
constant.

Finally in a similar vein are the statements #if , and #elif , they test for the truth of a
statement and work in the same manner as #ifdef including code if the statement is
true.

The following code example uses all these preprocessor statements. Create a new
‘Console Application’ called ‘Prepro’. Save it in a folder called ‘Prepro’ and then edit it
to resemble the following code example. See if you can work out what the output will be
before you compile and run it.

1 #include <stdio.h> /*include this library to allow us access to printf */
2 #include <stdlib.h> /*include this library to allow us to use system*/
3
4 #define RED_BALLOONS 99 /*Define RED_BALLOONS to be equal to 99*/
5 int main(int argc, char *argv[])
6 {
7 #ifdef RED_BALLOONS /*Check if RED_BALLOONS has been defined*/
8 printf("There were %d red balloons\n" ,RED_BALLOONS);
9 #else /*Do this if the previous #ifdef was false*/
10 printf("There were no red ballons\n");
11 endif /*End this conditional block*/
12
13 #if RED_BALLOONS < 98 /*Check if RED_BALLOONS is lower than 98*/
14 printf("There were less than 98 red balloons\n");
15 elif RED_BALLOONS > 98 /*If previous #if was false check this one*/
16 printf("There were more than 98 red balloons\n");
17 #endif /*End this conditional block*/
18
19 #undef RED_BALLOONS /*Remove define RED_BALLOONS*/
20 printf("\nBIG BANG!\n\n");
21
22 #ifndef RED_BALLOONS /*Check if RED_BALLOONS has not been defined*/
23 printf("There were no red ballons\n");
24 #else /*Do this if the previous #ifndef was false*/
25 printf("There were %d red balloons\n" ,RED_BALLOONS);
26 #endif /*End this conditional block*/

27
28 system("PAUSE");
29 return 0;
30 }

Functions
Functions are self contained blocks of code, they can be thought of as mini programs that
take in various parameters, do something with these and return a result. Functions are
defined like this:

Return_Type Function_Name (Parameter_Type Parameter _Name, …)
{
 …
 Block of code;
 …
}

The return type is either a data type such as int , float , etc, a pointer to a memory
location, a user defined data type such as a struct, or void . In the case of void you
are specifying that the function will return nothing. The function ends when it reaches a
return statement, (or the end of the code block if the return type is void). Any code
after a return statement is called ‘Unreachable code’ since it will never be executed.

The function name can be anything you wish with a few caveats. The name must be
unique, therefore you cannot create a function called printf if you #include
“stdio.h”, since this would confuse the compiler. The name must also conform to
the same naming conventions as variables. It is good form to give the function a name
that indicates its purpose, e.g. DisplayMenu instead of MyThingyFunction .

A function can take any number of parameters or none. Each parameter must be given a
name and associated data type. These data types are the same as those previously
discussed. Within the function, the parameters act as variables with local scope.

In your C programs you will always use at least one function, this is the main function.
This is a special function since program execution will start at the beginning of this
function and finish at the end of it. main follows the same rules as other functions, it has
a return type int , which is used to indicate whether the program executed without error
or not. It also takes parameters, these are passed to the program when it starts.

Functions can serve two different purposes. Firstly they can break your program into
smaller subunits to make them easier to understand. Secondly they allow you to reuse
blocks of code again and again rather than repeatedly writing the same code block.

We will create a program which uses a couple of basic functions to get a feel for them.

 Ensure wxDev-C++ is running.
 create a new ‘C’ project called ‘Functions’

 and save it in a folder called ‘Functions’ in your ‘Project’ folder.

The code follows below.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 /*This function has no parameters and returns nothi ng*/
5 void DisplayMenu()
6 {
7 printf("\n1. Calculate 5 + 4\n");
8 printf("2. Print 3 Names\n");
9 printf("3. Quit this lunacy\n");
10 }
11
12 /*This function has two parameters both are integer s it adds
13 these together and returns a integer which is the r esult*/
14 int Calculate(int FirstNumber, int SecondNumber)
15 {
16 return FirstNumber + SecondNumber;
17 }
18
19 /*This function has no parameters and returns nothi ng*/
20 void DisplayNames()
21 {
22 printf("\nThree Names\nHumphrey\nIngrid\nPeter\n");
23 }
24
25 int main(int argc, char *argv[])
26 {
27 int UsersChoice = 0;
28
29 while (UsersChoice != 3)
30 {
31 /*Call function to show menu*/
32 DisplayMenu();
33 /*Function from stdio.h which reads the users input */
34 scanf("%d" ,&UsersChoice);
35
36 if(UsersChoice == 1)
37 /*Call the Calculate function from within the print f function*/
38 printf("\n5 + 4 = %d\n" ,Calculate(5, 4));
39 else if (UsersChoice == 2)
40 /*Call the DisplayNames function*/
41 DisplayNames();
42 }
43
44 return 0;
45 }

The programme starts at the beginning of the main function. It declares a variable
UsersChoice and sets it’s value to 0. It then enters a conditional loop, and as long as
the variable UsersChoice doesn’t equal 3, it will continually execute the statements
inside. Within the loop, the first call is to the function DisplayMenu . This prints the
menu on the screen. Then it calls a function that is new to us, scanf . (We will learn
more about scanf later.) The programme now enters a conditional execution area,
where, depending on the value of UsersChoice, it either calls the function

Calculate or DisplayNames . Finally, once UsersChoice equals 3, the return
statement is executed and, as we have learnt, that is the end of the main function so the
programme ends.

Does it matter where we put a function in our source code? The answer is both yes and
no. To demonstrate this we will create another project.

Carry out the usual project creation process calling the new project PostFunction.
Create a new folder called PostFunction and save the project there.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(int argc, char *argv[])
5 {
6 DisplayBoringMessage();
7 system("PAUSE");
8 return 0;
9 }
10 /*This is a boring function*/
11 void DisplayBoringMessage()
12 {
13 printf("This is a boring message\n");
14 }

Before trying to compile this programme, try to work out what will happen when it runs.
Then press <F9>. You should find the programme doesn’t run and inside the message
window on the bottom of the IDE, displays the following errors.

Figure 3.4 – Error message.

Get used to such messages you will see them a lot as you progress. But what was wrong?
Let us try to work it out from the message. The first line says ‘conflicting types for
DisplayBoringMessage’, that’s the name of our function so what is wrong with it. Well
the first error has come in line 12 of our source code. The next error message tells us that
in line 6 there was a ‘previous implicit declaration of ‘DisplayBoringMessage’’. Why is
this? Because before you use a function C needs to know about it.

We can get around it by ‘Declaring’ the function that is by telling the compiler what the
function name is, what the return type is and what parameters it takes. Try adding the
following line into the source code in line 3.

void DisplayBoringMessage();

Since this is a declaration it ends with a semi-colon. Press <F9> to compile and run. You
should see that the program runs just fine now. The line you added is called the
‘Declaration’ of the function and the code in lines 11-14 is called the ‘Definition’ of the
function. When you include header files you are actually including the declaration of
function like printf so that you can use them.

Before we move on to look at some common and useful functions that are included in the
C standard library we will look at functions that can take a variable number of arguments.

This type of function is defined by using ‘…’ to say the function accepts a variable
number of arguments. The function must contain at least one known parameter before the
variable list of arguments. The reason for the known parameter is discussed after the
example. The most common function to use this format is the printf function. The
prototype of this style of function is

int MyFunction(int AnInteger, float AFloat = 5.4 , …);

So far so good, but how do we know how many extra arguments the user has passed in
and how do we access them? For a start we need to include <stdarg.h> which defines
various macros we need to use. Let’s look at a sample program first that uses a function
with variable parameters then we will break it down.

Carry out the usual project creation process calling the new project
VariableFunction.
Create a new folder called VariableFunction and save the project there.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <stdarg.h>
4
5 int AutoSumFunction (int NumberOfArguments, ...);
6
7 int main(int argc, char *argv[])
8 {
9 int Total = 0;
10 Total = AutoSumFunction (6, 12, 54, 24, 75, 45, 23);
11 printf("The total is %d\n" , Total);
12 system("PAUSE");
13 return 0;
14 }
15
16 int AutoSumFunction (int NumberOfArguments, ...)
17 {
18 int Sum = 0, CurrentValue = 0;
19 va_list ArgumentPointer;
20
21 /*We need to use va_start to get the start of the
22 argument list and store this in the argument pointe r.
23 The macro va_start does this*/
24 va_start(ArgumentPointer, NumberOfArguments) ;
25

26 /*Now we will create a loop that counts down the nu mber
27 of arguments.*/
28 for(;NumberOfArguments;NumberOfArguments--)
29 {
30 /*We get the next value from the list of arguments,
31 we need to tell va_arg what type of value we expect */
32 CurrentValue = va_arg(ArgumentPointer, int);
33 Sum = Sum + CurrentValue;
34 }
35
36 /*We must call va_end otherwise the program could c rash*/
37 va_end(ArgumentPointer);
38
39 /*Return the total*/
40 return Sum;
41 }

Press <F9> to compile and hopefully you should see the output “The total is 233”. So let
us breakdown this example to see what happens.

Line 3 - We include the header file <stdarg.h> this gives us access to va_list,

va_start, va_arg and va_end .

Line 5 - We create the prototype of our AutoSumFunction . It is defined as returning

an int value which is the sum of all its arguments. It takes one integer value
which is the number of arguments we are going to pass in. Then it takes any
number of other arguments.

Line 10 - We use the function passing in a 6 to say that we are going to give it six

arguments. Then we pass in six integer values.

Line 19 - We use the data type va_list to create a pointer called

ArgumentPointer . This is a pointer that we will use to access the list of
arguments. We will learn more about pointers in the section ‘Pointers’.

Line 24 - We call the macro va_start passing it the pointer ArgumentPointer

and the name of the first variable NumberOfArguments . This initialises our
pointer to point to the first argument after NumberOfArguments .

Line 28 - We create a for loop which we will use to access the list of arguments. We

don’t fill the first part of the for loop since NumberOfArguments already
has a value. If you remember the second part of the for loop checks for a
true/false value. We use NumberOfArguments here, which means if
NumberOfArguments equals 0 then stop looping. The last part of the for
loop decreases the value of NumberOfArguments by 1 each time.

Line 32 - We assign the return value from va_arg to CurrentValue . The parameters

of va_arg are the ArgumentPointer pointer and the data type we expect
the next argument to be.

Line 37 - We call va_end passing in the ArgumentPointer . Failing to do this is

likely to lead to a program crash.

So we have seen how to access the variable list of arguments, but what about the other
question, how do we know how many arguments there are? The answer unfortunately is
we don’t. That is why we need the first argument. To experiment with the truth of this

 Alter line 10 to

 Total = AutoSumFunction (6, 12, 54, 45, 23);

Then run the program.

You should find the result vastly different to the sum of 12,54,45 & 23. You might also
like to experiment with adding more arguments while leaving the first one as 6.

WARNING: Line 28 is somewhat dangerous we use the check

NumberOfArguments . This will stop the loop when
NumberOfArguments is equal to 0. But what if someone changed line
10 to Total = AutoSumFunction (- 6, 12, 54, 45, 23); .Then
NumberOfArguments would never equal zero.

We will learn more about functions in the next two sections, ‘Input/Output and other
useful functions’ and ‘Pointers’.

Input/Output and other useful functions
Earlier I said that C contains no keywords dealing with output to the screen and that
functions were used instead. We have so far seen two functions dealing with input and
output, printf and scanf . The good news is if you learn about these two the rest of
the input/output functions are fairly easy to learn.

Besides the input/output functions, we shall skim the wealth of functions C has available
for the programmer.

Input/Output to the screen

Output

We shall start by looking at output, after all it is much more exciting to create a program
that visibly does something, than one that you type a lot into and nothing seems to
happen.

C has three output functions putchar , puts , printf . The first two are simple
functions, putchar takes a char argument and prints it to the screen. The second takes

a string constant and prints it to the screen. The final one printf is far more complex
and we will explore it in more depth.

The prototype of the printf function is:

int printf(const char* string, …);

The return value from printf is either the number of characters it has written to the
screen or a negative value if there has been an error. The first argument to printf is the
string you wish to display in the console. For example:

 printf(“C Programming is amazing”);

This would result in the line ‘C Programming is amazing’ being displayed in the console.
But what about the second argument that string of dots? You may remember from our
discussion of functions this represents a variable list of arguments. We have already used
this feature in our sample programs. Within the string passed to printf as the first
argument we can embed format specifiers at the points where we want to insert values.
The format specifiers start with a ‘%’ and these are also used in the function scanf .
Every time the function finds a ‘%’ sign embedded in your sting it looks for a matching
argument and depending on the code after the ‘%’ sign outputs the argument in this
format. For example:

printf("I am %d today and my name is %s",200,"Rip V an
Winkle\n");

In this example printf would output ‘I am ‘ then it would meet the ‘%’ sign it looks to
see what follows in this case a ‘d’. It now looks for the first variable argument which is
‘200’, since the format code was ‘d’ it outputs this as an integer. Next it continues to
output ‘today and my name is ‘ again it comes to a ‘%’ sign again it looks for the format
sign in this case ‘s’ so it formats the second argument as a string. A list of all the format
specifiers follows.

Code printf scanf

%a Hex output in form 0xh.hhhhp+d (C99) Input a floating point (C99)
%A Hex output in form 0xh.hhhhP+d (C99)
%c Output a character Input a character
%d Output signed decimal integer Input a decimal integer
%e Output in scientific notation lowercase e Input a floating point
%E Output in scientific notation uppercase E
%f Output decimal floating point Input a floating point
%g Output in the shorter of %e or %f Input a floating point
%G Ouput in the shorter of %E or %f
%i Output signed decimal integer Input a decimal, octal or

hexadecimal integer
%n Stores number of characters written in an Stores number of characters read in

integer pointer an integer pointer
%o Output unsigned octal Input an octal
%p Displays pointer Input a pointer
%s Ouput character string Input a string
%u Output unsigned decimal integer Inputs an unsigned decimal integer
%x Output unsigned hexadecimal

(lowercase)
Input a hexadecimal

%X Output unsigned hexadecimal
(uppercase)

%% Outputs ‘%’ sign Inputs a ‘%’ sign
%[] Reads a set of characters

The format specifiers in printf can also be modified in various ways. These are:

• Minimum field width – Placing an integer between the ‘%’ sign
and the format code ensures that the
output is padded with spaces until it
reaches the specified length. If it is longer
than the specified length it is output in
full.

• Output precision - The field width modifier can be followed
by a decimal point and another integer.
For floating point values this specifies the
number of decimal places displayed. For
strings this specifies the maximum
number of characters displayed. For
integers it specifies how many digits are
displayed leading zero are used to pack
the difference.

• Output justification - By default the output is right justified, by
adding a minus sign after the ‘%’ sign you
can alter the output to be left justified.

• long and short data type modification - The modifiers ‘l’ for long and ‘h’ for short
can be added to the format specifiers
d,i,o,u,x and n to change them to long or
short data types. The modifier ‘L’ can
similarly be used with format specifiers
e,f, and g to specifiy a long double.

• Added decimal point - Using a ‘#’ sign after the ‘%’ sign before
g,G,f,e or E specifiers causes a decimal
point to be displayed.

• Added hexadecimal sign - Using a ‘#’ sign after the ‘%’ sign before
x or X specifiers causes a 0x prefix to be
displayed.

• Variable output precision - Instead of using the format ‘%5.4f’ it is
possible to use ‘%*.*f’. For each ‘*’

printf will look for the value to replace
it from the list of variable arguments.

NOTE: Remember when we discussed variable argument functions we said that

va_arg needed to be told what data type was expected. That is the reason
for the different format specifiers. Each time printf finds a ‘%’ in the
string it looks for the next variable argument and returns it as the type
listed in the above table. If your output from a printf function looks
strange or gives wrong results make sure you are using the correct format
specifiers. Also make sure you have the same number of arguments as
format specifiers.

Input

To match the three output functions C provide three input functions getchar , gets
and scanf . Once again the first two are simple functions, getchar returns a char
from the input buffer, gets takes a string array (there is more about arrays in the
sections, ‘Pointer’, ‘Memory allocation’, ‘Arrays’ and ‘Strings’). The final function
scanf is like its sibling printf a far more complex function that we will explore.

The prototype of the scanf function is:

int scanf(const char* string, …);

The return value from scanf is the number of items that have been assigned a value or
in the event of an error it returns EOF. EOF is a constant whose value can change from
one compiler to another so just use the constant name EOF.

The first argument to the scanf function is a string of format specifers, for each format
specifier you need to include an argument which is a place for scanf to store the values
it reads in from the keyboard. It works in a very similar way to printf , the main
different is that the variable arguments all need to be addresses to variables. We will
discuss addresses under the topic pointers, but for now just accept that this means putting
a ‘&’ sign in front of each of the arguments. For example:

scanf("%d%f%s",&Int,&Float,&String);

In the above line the scanf would read the first input from the keyboard and store it in
the variable ‘Int’, the second input would be stored in ‘Float’ and the final input in
‘String’.

There are a few hazards with scanf . The first is that in some implementations it buffers
the lines. This means that if you use scanf to read single characters it won’t do anything

until you press [Enter]. Secondly when reading strings it reads in everything until the first
white space character which is either a space, tab, vertical tab, formfeed or newline. For
example scanf would read the line “Welcome friends and Romans” as “Welcome”. To
read in a whole line including white spaces you need to use gets .

The scan set ‘%[]’ format specifier tells scanf to read in only those characters contained
in the set. For example:

scanf(“%[GgeRhdW]”,&String);

In the above example scanf will store the users input in the variable String. Any of the
characters G,g,e,R,h,d,W will be stored. As soon as scanf encounters a character that is
not in this range it will stop reading. The scan set is also case sensitive so G is not the
same as g.

Like printf scanf supports various format modifiers these are as follows:

• Maximum field width - Inserting a number between ‘%’ and the
format code will cause only that number
of characters to be read.

• Long and short data type modifier - These are the same as printf l,h & L.
These alter the length of the data type.

• Discard field - Inserting a ‘*’ between the ‘%’ and the
format code will cause the input to be read
but not assigned to any variable.

Since all this may be a lot to take in let’s create a sample program which makes use of
these features. Take your usual steps to create a new C project.

Call the project ‘InputOutput’.
Save it in a new folder called ‘InputOutput’.
Alter the generated code to match the following

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(int argc, char *argv[])
5 {
6 char FirstNameString[200];
7 char LastNameString[200];
8 int AgeInteger, Count;
9 float MyAgeFloat;
10 printf("Hello what is your first name\n");
11 scanf("%s" ,&FirstNameString);
12 printf("\nHello %s, what is your last name?\n" , FirstNameString);
13 scanf("%s" ,&LastNameString);
14 printf("\nSo you are %s %s\n" , FirstNameString, LastNameString);
15 printf("How old are you %s\n" , FirstNameString);
16 scanf("%hd" , &AgeInteger);
17 MyAgeFloat = AgeInteger + 0.2 ;

18 printf("\nThat's funny I am %*.*f\n" , 4, 2,MyAgeFloat);
19 printf("\nThis is right justified");
20 printf("\n%23s\n" ,FirstNameString);
21 printf("\nThis is left justified");
22 printf("\n%-23s\n\n" ,LastNameString);
23 printf("%s%n contains " ,FirstNameString,&Count);
24 printf("%d characters\n\n" ,Count);
25 system("PAUSE");
26 return 0;
27 }

Press <F9> to compile and run.

The output should resemble this

Figure 3.5 – Output from InputOutput program

Most of the program should be self explanatory lines of note are:

Line 18 where the %*.*f format specifier is used. The next two arguments specify
the total number of digits to display and the number of digits that appear after the
decimal point.

Line 20 specifies that the output should be at least 23 characters wide. This causes
the text to be right justified.

Line 22 specifies that the output should be 23 characters wide the ‘-‘ sign causes it
to be left justified.

Line 23 outputs the users first name then stores the number of characters output
into the variable Count. This is used in the next line to say how long the user’s
first name is.

Next we shall look at the functions C provides to read and write files.

Input/Output to Files

The design of C is influenced by Unix which has the philosophy that everything is a file.
This shows through in the design of the input/output functions. As a result the functions
to read and write files are very similar to those you have already met. Actually the output
console and input keyboard are also treated as files. These have the predefined names
STDOUT and STDIN. The difference is that printf , scanf and the like use them
transparently.

In order to read or write files you need to open them first and close them when you have
finished with them. The header file you need to include is <stdio.h> this allows you
to use the FILE type as a pointer to files.

To open we need to use the function fopen , the prototype of this function is defined in
the following way.

FILE * fopen(const char * filename, const char * mo de);

If the function succeeds the return type is a pointer to a valid FILE structure. If it doesn’t
succeed then it returns a NULL pointer. (If this makes as much sense to you as a speech
in Klingon then look ahead to the sections on ‘Pointers’ and ‘Structures’). The first
argument is a string constant which contains a valid filename or file path. Examples of
these are “Readme.txt” or “C:\\Windows\\Readme.txt”. The second argument is a flag
indicating what mode to open the file. The various options are contained in the following
table.

Flag Meaning
a Open or create a text file and append to the end of it
r Open a text file to read from it
w Create a text file to write to it
ab Open or create a binary file and append to the end of it
rb Open a binary file to read from it
wb Create a binary file to write to it
a+ Append or create a text file as read/write
r+ Open a text file to read/write from it
w+ Create a text file to read/write to it
a+b Append or create a binary file as read/write
r+b Open a binary file to read/write from it
w+b Create a binary file to read/write to it

When you have finished using a file you then need to close it. In order to do this you need
to use the function fclose . The prototype of fclose is declared this way.

int fclose(FILE * FilePointer);

If successful the fclose function returns 0 otherwise it returns EOF.

Output

The file output functions are very closely related to console output functions. They are so
similar that they have the same names just with an f appended to the front of them, so we
get fputc() , fputs() and fprintf() . The other major difference is that they all
require a FILE pointer to a valid file. fprintf() is the only function we will discuss
here. Its prototype is declared as:

int fprintf(FILE * filepointer, const char * string ,…);

You may notice that other than the addition of the FILE pointer, it looks exactly like the
prototype of the printf() function earlier. In fact it also works in exactly the same
way as the sample program that follows the next section will demonstrate.

Input

Like the functions described in the previous section the file input functions are just the
same as the console input functions just with an f appended to the front and an extra
argument which is a valid FILE pointer. So we get fgetc() , fgets() and
fscanf() once again it is fscanf() that we will discuss. The declaration of the
prototype is as follows:

int fscanf(FILE * filepointer, const char * string, …);

So let us look at an example of using these two function fprintf and fscanf . As
usual

Start up a new C console project.
Call it SingleFile.
Save it in its own folder called SingleFile.
Then alter the generated source code to match the following.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(int argc, char *argv[])
5 {
6 char Name[100];
7 int Age;
8 char NameFromFile[100];
9 int AgeFromFile;
10
11 FILE * OurFile;
12
13 /*Demonstrate that we can read and write to and fro m the console
14 using fprintf and fscanf with the pointers stdout a nd stdin*/
15 fprintf(stdout, "Please enter your first name and your age\n");
16 fscanf(stdin, "%s%d", Name, &Age);
17
18 /*Try to open a file to write to, check it is valid */

19 if((OurFile = fopen("Test.txt" , "w")) == NULL)
20 {
21 /*If the file pointer is NULL complain and exit*/
22 fprintf(stdout, "Sorry but I can't open a file to write to\n\n");
23 exit(1);
24 }
25
26 fprintf(stdout, "\nWriting your information to file\n");
27 /*Use the OurFile pointer to write information to t he file*/
28 fprintf(OurFile, "%s %d" , Name, Age);
29 /*Close the file now we have finished with it*/
30 fclose(OurFile);
31
32 /*Try to open a file to read from, check it is vali d*/
33 if((OurFile = fopen("Test.txt" , "r")) == NULL)
34 {
35 /*If the file pointer is NULL complain and exit*/
36 fprintf(stdout, "Sorry but I can't open a file to read from\n\n");
37 exit(1);
38 }
39
40 fprintf(stdout, "Reading your information from file\n");
41 /*Use the OurFile pointer to read information from a file*/
42 fscanf(OurFile, "%s%d", NameFromFile, &AgeFromFile);
43 fclose(OurFile);
44
45 fprintf(stdout, "\nYour name is %s, " , NameFromFile);
46 fprintf(stdout, "and your age is %d\n" , AgeFromFile);
47
48 system("PAUSE");
49 return 0;
50 }

Compile and run this program.

Some of this program should be fairly obvious from the program we used to demonstrate
using printf and scanf. But I’ll discuss some of the lines that differ.

Line 15 - The effect of this line is the same as using printf but instead we use fprintf and

the pointer called stdout. This pointer as we discussed earlier writes directly to
the console.

Line 16 - This line does the same as line 15 but used fscanf along with the pointer stdin

to replace scanf.

Line 19 - We use the function fopen to attempt to open a file called Test.txt from writing

to. We test the value of the returned pointer against the value NULL. If they
match there has been an error while opening the file and we cannot use it.

Line 23 - If the file pointer is NULL we call the function exit with the value 1. This ends

the program at this point and signals that the program has halted in an error
state.

Line 28 - We write the values captured earlier to the file.

Line 30 - We close the file as soon as we have finished using it.

Line 42 - We read the values back in from the file, to prove that these are not just stored

in memory we use different variables.

Line 43 - Once again we close our file as soon as we are finished with it.

While fscanf and fprintf are very powerful and fairly easy to use they are not the
most efficient since they involve converting from binary to characters. For large amounts
of data reading and writing there are other better options these are mentioned briefly in
the next section but are beyond the scope of this book.

Other file handling functions

This is only the tip of the iceberg when it comes to file handling routines. If you are
interested (and I know you are) then consider it a matter of homework to find out about
fseek, ftell, feof, ferror, rewind, remove, fflush, fread and fwrite. These functions expand
the file handling capabilities of C far beyond simple reading and writing of text files.

Some other useful functions

The following table lists some of the other useful functions that C provides.

Various functions – Contained in <stdlib.h>
double atof(const char* str) Converts the string str into a double which

it returns.
int atoi(const char* str) As above but converts to an integer value.
long int atoll(const char* str) As above but for a long integer value.
int rand(void) Returns a random number between zero

and RAND_MAX (this is at least 32,767).
void srand(unsigned int seed) Sets a start point for the rand function.

There are many more functions contained in a range of header files that we haven’t even
discussed. It is well worth exploring what is available as there is little more annoying
then struggling to write a function only to find that it has already been provided for you.

Pointers

So far we have mentioned pointers a few times indeed it is nearly impossible to talk about
C at any length without mentioning pointers. They are one of the greatest strengths of C.
Unfortunately they are also one of the greatest dangers in C programming. So what is a
pointer?

The memory in a computer is like one great big road. All along the road are houses. Each
house contains a piece of data. So how do we locate a piece of data. Well each house has

an address so we can use that address to locate the data. For some important buildings
there may be a sign pointing to that building with a name on it. A pointer in C is exactly
the same. The sign is a variable and the value it holds is the address within the computers
memory of the start of the piece of data it points to.

To define a variable as a pointer we use a ‘* ’ after its data type and before the variable
name. For example:

int * MyIntPointer;

But how do we get the address of a piece of data to point to? Using the ‘&’ operator
before a variable name returns the address of that variables data. We saw an example of
using this in the function scanf .

However most times you don’t want to know where a piece of data is stored rather you
are more interested in knowing what is stored there. To retrieve the value stored at the
address the pointer references you can use the ‘*’ operator. For example:

int AnInteger = *MyIntPointer;

This assigns the value referenced by MyIntPointer to the variable AnInteger.

WARNING: Like any variable in C when you define a pointer as above it points to a
random value therefore it is good practice to assign it a value when you
define it. If you have a value to point to then you can define it like this

 int * MyIntPointer = &AnInteger;

 Otherwise you can assign it the value NULL.

 int * MyIntPointer = NULL;

 NULL is used because it is guaranteed to point to nothing. Most functions

that return a pointer to a section of memory will return NULL if there has
been an error. In this case it is necessary to check what the return value is
before using the returned pointer.

 Uninitialised pointers are a common cause of errors in C programming.

The best you can hope for are unexpected outputs. The worst is programs
that crash or on older operating systems computers that crash. The reason
for this is that you are operating on memory that belongs to another part of
the program or to another program. Such problems can be very tricky to
track down.

As we have already seen we can use pointers to point to variables we have already
declared. We can also use pointers to allocate fresh memory. As we shall see in the next
section.

To demonstrate pointers and the different operators they use let us create another example
program. As usual

Create a new C project.
Name the project ‘Pointy’.
Save it in a new directory called ‘Pointy’.
Change the generated code to match the following.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(int argc, char *argv[])
5 {
6 int Number1 = 5, Number2 = 12, Total = 0;
7 int * MyIntPointer;
8
9 /*Use MyIntPointer to reference Total. We need to u se '&'*/
10 MyIntPointer = &Total;
11 /*Use MyIntPointer to display value and location of variable Total*/
12 printf("The value of Total = %d.\n" , *MyIntPointer);
13 printf("The Location of Total is %d\n" , MyIntPointer);
14 /*Use MyIntPointer to alter the value of Total*/
15 *MyIntPointer = Number1 * Number2;
16 /*Display the location and value of Total
17 displaying that MyIntPointer changed it*/
18 printf("The value of Total = %d.\n" , Total);
19 printf("The location of Total is %d\n" , &Total);
20
21 system("PAUSE");
22 return 0;
23 }

This program demonstrates the use of pointers to manipulate the values held in a memory
location. By now the lines up to line 9 should make sense to you. Let us consider some of
the other lines.

Line 10 - uses the ‘&’ address operator to assign the address of the variable Total to the

pointer MyIntPointer.

Line 12 - uses the ‘*’ operator to print out the value held in the memory location pointer

to by MyIntPointer.

Line 13 - then prints out the value of MyIntPointer which is the memory location of

Total.

Line 15 - assigns the value of Number1 * Number2 to the memory location pointed to by

MyIntPointer.

Line 18 - out the value of Total showing that it has been altered by means of the
MyIntPointer.

We will learn more about pointers in the following sections ‘Memory allocation’ ,
‘Arrays’ and ‘Strings’.

Memory allocation

Within C programming a distinction is made as to where the memory you use is allocated
from. There are two terms used the stack and the heap. It is not vital to know about these
but you will come across the terms every now and then so it is useful to understand the
difference.

As your program runs it allocates memory from the stack. As each function is called it is
placed on the memory stack, any variables declared within the function are also placed on
the stack. As the function ends it is removed from the stack and any variables local to
function are destroyed (as you may remember from the discussion on scope earlier).

Sometimes though you want to store data within a function yet use it later. If this
information was stored on the stack it would be destroyed when the function returns. To
avoid this you can allocate memory on what is called the heap. You are responsible for
deciding when memory you require from the heap is created and destroyed. C provides a
library of functions dedicated to memory allocation and destruction. We shall look at
these now.

The header file we need to include to use these functions is <stdlib.h> . There are
four functions that can be used malloc , calloc , realloc and free . We shall
consider each of these.

malloc The function protype is

 void* malloc(size_t SizeInBytes);

 To use the function it is necessary to specify the amount of memory you

want to ask for, malloc then returns a pointer which references the
location of this memory. This pointer is a void pointer which you need to
cast to the correct type for your use. If the function is unable to allocate the
memory it will return a NULL pointer. For Example:

int * MyIntPointer = NULL;
MyIntPointer = (int*) malloc(sizeof(int));
If(MyIntPointer)
...

First we declare MyIntPointer to be a pointer to type int . We assign it the
value NULL. Next we use malloc and ask for a piece of memory the size

of an int . We cast the returned pointer from malloc from type void to
type int . Then assign this to MyIntPointer. Finally we check the
MyIntPointer does not point to NULL before using it.

calloc The memory returned by malloc contains random values. calloc

intializes all the bits in the returned memory to zero. The prototype for
calloc differs from malloc and is declared as

void * calloc (size_t Number, size_t Size);

 To use calloc we need to specify the number of units we want and the

size of these units. For example:

int * MyIntPointer = NULL;
MyIntPointer = (int*) calloc(1,sizeof(int));
If(MyIntPointer)
...

 This example is the same as the one for malloc the difference is that we

ask for one unit of size int . The returned memory will be allocated to zero.

realloc Sometimes you may find that you haven’t allocated enough memory and

need to enlarge your allocation that is when you need realloc . The
protype for realloc is

void * realloc(void * ExistingPointer, size_t
SizeInBytes);

 To use realloc we need to use our pointer to the existing block of

memory. Followed by the size we need the new block to be. realloc
returns a pointer to the new memory block. Again this can be NULL if there
has been an error.

free Once you are done with the memory you have created with the above

functions you need to free the memory allocated. You can do this with the
free function. The prototype for free is declared as

void free(void * ptr);

 You call free with the pointer that you have received back from one of the

above operations.

WARNING: It is vital that you free all memory that you have previously allocated.

Otherwise when your program ends this memory can still be allocated.
This section of memory is then never freed for other programs to use. This

is called a memory leak. In low memory situations programs with memory
leaks can cause operating systems to crash.

Arrays

An array is a block of memory consisting of a number of the same type of data units.
There are many instances in which using arrays makes sense. For example you may wish
to store the ages of your family members. You could do this by creating a new variable
for each member. E.g.

int Member1 = 34, Member2 = 54, Member3 = 23;

To print out a list of ages you could do the following

prinf(“Member 1 = %d, Member 2 = %d, Member 3 = %d” ,
Member1,Member2,Member3);

This is fine for a few family members. But what if you have a huge family? That
printf statement is going to get unwieldy. The answer is an array.

An array is defined in the same manner as a variable the difference is that after the
variable name you enclose the number of units you need in square ‘[]’ brackets. For
example:

int FamilyMembers [10];

This would give you an array of 10 integers named FamilyMembers. An array is not
much use unless you can fill it with values and retrieve them. So how do we fill it? The
first way is by filling it when we declare it to do this we put an equals ‘=’ sign after the
square brackets and then list the values between ‘{}’ brackets. For example:

int FamilyMembers[3] = { 24, 54, 63};

This is called array initialization. It is also possible when initializing arrays at the same
time as declaring them as above to miss out the array size in the square brackets. The
compiler will automatically work out the size of the array for you for huge arrays and
strings this can be a blessing.

Alternatively you can fill each section of the array by referring to it by its index number.
One important point is that in C arrays start at index 0. So in the previous example
FamilyMembers starts at index 0 and ends at index 2. So we can refer to them this way:

FamilyMembers[1] = 45;
printf(“Uncle Fred is %d years old” ,FamilyMembers[1]);

What is not immediately apparent is that all arrays in C involve using pointers, this is
because the array name is just a pointer to the memory location of the first element of an
array. So the above could be written as:

*(FamilyMembers + 1) = 45;
printf(“Uncle Fred is %d years old” ,*(FamilyMembers +
1));

So let us look at an example programme that demonstrates using arrays and pointers. As
per usual

Create a new C project.
Call it ‘TodaysArray’.
Save it in a folder called ‘TodaysArray’.
Alter the code to match the following.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 /*Create a define for our array size*/
5 #define DAYS_IN_A_WEEK 7
6
7 int main(int argc, char *argv[])
8 {
9 /*Create array and fill it*/
10 int TodaysLuckyNumber[DAYS_IN_A_WEEK] = { 35, 64, 23, 86, 23, 12, 43};
11 int ArrayIndex = 0;
12
13 /*Loop through array and print out the days lucky n umber*/
14 for(;ArrayIndex < DAYS_IN_A_WEEK; ArrayIndex++)
15 printf("For day number %d the lucky number is %d\n" ,
16 ArrayIndex + 1,TodaysLuckyNumber[ArrayIndex]);
17
18 /*Reset the index*/
19 ArrayIndex = 0;
20 /*Print a new line*/
21 printf("\n");
22
23 /*Now do it all again using pointers*/
24 for(;ArrayIndex < DAYS_IN_A_WEEK; ArrayIndex++)
25 printf("For day number %d the lucky number is %d\n" ,
26 ArrayIndex + 1,*(TodaysLuckyNumber + ArrayIndex));
27
28 system("PAUSE");
29 return 0;
30 }

As usual let us break down the lines of interest to us.

Line 5 - We define a constant value to use in creating the array and for use in the loop

that indexes the various elements. The beauty of this is that if you need to
resize the array you can alter the value of the constant. The constant also helps
the program to be self documenting.

Line 10 - We create an integer array called TodaysLuckyNumber. We fill the contents of
the array at the same time as we create it.

Line 14 – We create a for loop the first part is empty since we have already initialised

ArrayIndex to 0. We check ArrayIndex is lower than DAYS_IN_A_WEEK
since if you remember the array starts at 0 and ends at size – 1.

Line 16 - We print out the value of the index plus one and the value contained in

TodaysLuckyNumber[index].

Line 26 – We repeat the actions of line 16 the difference is in the second part where we

use the variable name as a pointer. We use ‘* ’ to obtain the value from
TodaysLuckyNumber. We add ArrayIndex to the value of
TodaysLuckyNumber to move the pointer along. We need to include this in
braces otherwise we end up adding the value of ArrayIndex to the contents of
TodaysLuckyNumber (remember operator precedence).

It is possible to create 2, 3 or more dimensional arrays, but that is beyond the scope of
this book. Again if you are interested there are many excellent resources on the Internet
to help you. Our discussion of arrays leads us next to consider string handling in C.

Strings

String handling in C is considered by many to be one of its weak points. The main reason
for this is that strings are implemented using arrays of type char . This is different to
other programming languages which consider a string to be a data type in its own right.
As a result strings have a tacked on feel about them and require functions to achieve basic
operations.

We saw in the above section how to declare and initialize arrays at the same time we can
do the same with strings. Remember that a string is just an array of characters. So we can
initialize it like this:

char MyString[] = {'I',' ','a','m',' ','b','o','r','e', 'd','\0'};

Wow! That is so long winded. There must be an easier way to initialize strings. Luckily
there is. The above example can be declared and initialized in the much more user
friendly manner of:

char MyString[] = “I am bored”;

Ah, but what a minute surely those two lines don’t have the exact same meaning. The
first has a ‘\0’ thing at the end and the second one doesn’t. The ‘\0’ thing on the end is the
null terminator. This tells functions that are working with the string where the string ends.
It is missing in the second line because using the shorthand method of initialization
automatically adds the null onto the end. So the second method is not just easier, it’s
quicker, smarter and washes the dishes.

So what can we do with strings? We have already seen that we can print them out and
read them in. However with the use of various functions there are all sorts that we can to
with them. We can compare strings, add strings to other strings, find out how long they
are and much more.

The following table shows the some of the various string and character operation
functions plus the header files they are contained in.

String functions – Contained in <string.h>
char * strcpy (char * str1, const char * str2) Copies str2 into str1. str2

must be null terminated
char * strcat (char * str1, const char * str2) Adds str2 to the end of str1

and adds a null terminator,
you need to make sure str1
is long enough for this

char * strchr (const char * str, int ch) Returns a char pointer to
the first occurrence of the
character ch in the string str

int strcmp (const char * str1, const char * str2) Compares str1 to str2.
Returns a zero value if both
strings are the same, a
negative value if str1 is less
than str2 and a positive
value if str1 is greater than
str2

size_t strlen (const char * str) Returns an integer
containing the length of a
null terminated string str.
The terminator is not
counted.

char * strstr (const char * str1, const char * str2) Returns a char pointer to
the first occurrence of the
string str2 in the string str1

Character functions – Contained in <ctype.h>
int isalnum(int ch) Returns a non zero value if

the character ch is a letter or
number

int isalpha(int ch) Returns a non zero value if
the character ch is a letter

int isspace(int ch) Returns a non zero value if
the character ch is a white
space character. E.g. tab,
space, etc

int isdigit(int ch) Returns a non zero value if
the character ch is a number

int isupper(int ch) Returns a non zero value if
the character ch is an upper
case letter

int islower(int ch) Returns a non zero value if
the character ch is a lower
case letter

int ispunct(int ch) Returns a non zero value if
the character ch is a
punctuation mark. E.g. ! or
?

int tolower(int ch) Returns the lower case
equivalent of the character
ch

int toupper(intch) Returns the upper case
equivalent of the character
ch

We will look at a brief example of using a few of these functions. So fire up wxDev-C++
and do the following:

Create a new C project
Name the project ‘MyStringThing’
Create a new folder called ‘MyStringThing’
Save your project there
Alter the generated source code to match the following

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <ctype.h>
4 #include <string.h>
5
6 int main(int argc, char *argv[])
7 {
8 /*Declare and initialise our variables*/
9 char FirstName[50] = "" ;
10 char SecondName[50] = "" ;
11 char FullName[110] = "" ;
12 int LoopIndex = 0;
13 int UpperCase = 0;
14 int LowerCase = 0;
15 int Punctuation = 0;
16
17 printf("Please enter your first name\n");
18 scanf("%s" ,FirstName);
19 printf("Please enter your family name\n");
20 scanf("%s" ,SecondName);
21
22 /*Copy FirstName into FullName*/
23 strcpy(FullName,FirstName);
24 /*Use strcat to add a space after first name*/
25 strcat(FullName, " ");
26 /*Use strcat to append the FamilyName*/
27 strcat(FullName,SecondName);
28

29 printf("\nYour full name is %s\n" ,FullName);
30 printf("Your first name is %d characters long\n" ,strlen(FirstName));
31
32 /*Loop through each letter in the string and keep a count of
33 upper and lower case letters plus punctuation marks */
34 for(LoopIndex = 0; LoopIndex < strlen(FullName); LoopIndex++)
35 {
36 if(islower(FullName[LoopIndex]))
37 LowerCase++;
38 else if (isupper(FullName[LoopIndex]))
39 UpperCase++;
40 if(ispunct(FullName[LoopIndex]))
41 Punctuation++;
42 }
43
44 printf("\nYour full name contains:\n");
45 printf("%-3d Lower case letters\n" ,LowerCase);
46 printf("%-3d Upper case letters\n" ,UpperCase);
47 printf("%-3d Punctuation mark" ,Punctuation);
48
49 /*use the shorthand if ?: to add an s to the end of the previous
50 output if punctuation equals anything other than 1* /
51 printf("%c\n\n" ,Punctuation == 1?' ':'s');
52
53 system("PAUSE");
54 return 0;
55 }

Compile and run the program.

You should receive an output resembling the following

Figure 3.6 – Output from the MyStringThing Program

Let us have our usual breakdown (of the program)

Line 3 - We include the new header file <ctype.h> this contains the character

handling functions.

Line 4 - We include the header file <string.h> this contains the string handling

functions.

Line 23 - We use the function strcpy to copy the contents of the string FirstName
into the string FullName.

Line 25 - We use the function strcat to add the string constant “ “ to the end of the

string FullName this gives us a space between the first name and the family
name.

Line 26 - We use the function strcat to add the contains of the string FamilyName to

the end of the string FullName.

Line 30 - We use the function strlen to output the length of the first name.

Line 34 - We start a for loop to look at the string character by character.

Line 36 - We use islower function to see if this character is lower case or not.

Line 38 - If this character was not lower case we use the isupper function to see if it

is uppercase or not.

Line 40 - We use the ispunct function to see if this character is punctuation of not.

Line 51 - We use the shorthand if operator ?: to output an s after punctuation mark if

we have higher or lower than 1 punctuation mark, this makes our program a
little more professional.

Now for something a little different, creating our own data types. We consider creating
datatypes that consist of several pieces of data in the next section Structures.

Structures

So far we have seen how to use arrays to group together items of data of the same kind.
But what about grouping together items of different kinds? To do this C provides
structures. There are many uses for structures. One of these is to overcome the limitation
that functions can only return one piece of data. By making that piece of data a structure
you can return many items at once. To create a structure we need to use the aptly named
keyword struct .

struct

You have already come across a structure when we looked at input/output with files. The
FILE data type is actually a structure. Besides the keyword struct we also need a name
to refer to the structure by and data members. An example of a structure follows below.

struct CarDetails
{
 int Age;

 char Model[30];
 char Registration[10];
};

After the keyword struct comes the name of the structure then inside the ‘{} ’ braces
are the structures members. If you are used to Pascal programming or databases then a
structure corresponds to a record and the members to a field.

We can use the structure as a data type the only caveat is that we need to use the word
struct in front of it. For example to use the above example we can write the following:

struct CarDetails MyCarDetails;

In the above example we create a new structure called MyCarDetails. But having created
the new structure how do we access the members? This is done using the dot ‘. ’
operator. For example:

MyCarDetails.Age = 10;
printf(“My car is %d years old\n” ,MyCarDetails.Age);

So far so simple. However if the structure is referred to via a pointer the method of
accessing its members alters. Now we need to use ‘-> ’ instead of ‘. ’. For example:

struct CarDetails ACarDetails;
struct CarDetails * MyCarDetails = &ACarDetails;
MyCarDetails->Age = 10;
printf(“My car is %d years old\n” ,MyCarDetails->Age);

It is also possible to use the dot ‘.’ operator with pointers using the following notation.

(*MyCarDetails).Age = 10;

Due to the order of precedence rules it is necessary to use the braces around
*MyCarDetails.

Although the structure has become like user defined data type it is not quite the same
since you have to use the keyword struct in front of the structure name when ever you
wish to create a new instance of it. However by making use of another C keyword
‘ typedef ’ we can over come this restriction.

typedef is used to assign another name to a data type for instance

typedef int MyInt;

This allows you to use MyInt as a data type. We can combine this with structures in the
following way.

typedef struct
{
 int Age;
 char Model[30];
 char Registration[10];
}CarDetails;

CarDetails MyCarDetails;

MyCarDetails.Age = 10;

This allows you to use the structure exactly as you would any other data type. Along with
the structure C provides a similar option called the union.

union

The union looks exactly like a structure the difference is that each member of a union
occupies the same area of memory therefore you can only use one member of a union at a
time. Therefore while a structure is the size of all its members combined, a union is the
size of its largest member. A union has several uses, one of which is to save memory
when you only need to operate on one member at a time. Using a union is in all other
respects like using a structure. An example follows:

typedef union
{
 int Age;
 char Model[30];
 char Registration[10];
}CarDetails;

CarDetails MyCarDetails;

MyCarDetails.Age = 10;

 If we hadn’t used typedef then we would have needed to place the name CarDetails
after the keyword union and have used the keyword union before CarDetails
MyCarDetails; .

NOTE: This restriction is removed in C++ therefore you can do the above in C++

without resorting to using typedef and your structure will work like any
other data type.

To give you some idea of structures and unions let us create a sample program. As usual

Create a new C project
Call it UnitedStructures
Save it in its own folder called ‘UnitedStructures’
Alter the generated source code to match the following.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 typedef struct
5 {
6 int NumberOfCows;
7 int NumberOfSheep;
8 int NumberOfPigs;
9 }FarmYardStruct;
10
11 typedef union
12 {
13 int NumberOfCows;
14 int NumberOfSheep;
15 int NumberOfPigs;
16 }FarmYardUnion;
17
18 int main(int argc, char *argv[])
19 {
20 /*Create a structure*/
21 FarmYardStruct OldMacsFarm;
22 /*Create a union*/
23 FarmYardUnion YoungMacsFarm;
24
25 /*Fill the members of OldMacdonaldsFarm structure*/
26 OldMacsFarm.NumberOfCows = 12;
27 OldMacsFarm.NumberOfSheep = 54;
28 OldMacsFarm.NumberOfPigs = 6;
29
30 /*Fill the members of YoungMacdonaldsFarm union*/
31 YoungMacsFarm.NumberOfCows = 12;
32 YoungMacsFarm.NumberOfSheep = 54;
33 YoungMacsFarm.NumberOfPigs = 6;
34
35 /*Lets tell the world all about the Macdonalds*/
36 printf("Old Macdonald had a farm\n");
37 printf("On that farm he had %d cows\n" ,OldMacsFarm.NumberOfCows);
38 printf("and on that farm he had %d sheep\n" ,OldMacsFarm.NumberOfSheep);
39 printf("and on that farm he had %d pigs\n\n" ,OldMacsFarm.NumberOfPigs);
40
41 printf("Young Macdonald also had a farm\n");
42 printf("On that farm he had %d cows\n" ,YoungMacsFarm.NumberOfCows);
43 printf("and on that farm he had %d

 sheep\n" ,YoungMacsFarm.NumberOfSheep);
44 printf("and on that farm he had %d

 pigs\n\n" ,YoungMacsFarm.NumberOfPigs);
45
46 /*Print out the sizes of the structure compared to the union*/
47 printf("Sizeof Farmyard struct is %d\n" ,sizeof(FarmYardStruct));
48 printf("Sizeof Farmyard union is %d\n" ,sizeof(FarmYardUnion));
49
50 system("PAUSE");
51 return 0;
52 }

As usual compile and run the program. You should get something similar to the following
output.

Figure 3.7 – Output from UnitedStructures program

So why is there a difference between Old Macdonald’s farm and Young Macdonald’s
farm?

The difference is that the details of Young Macdonald’s farm are held in a union. As the
number of animals is written to each member it over writes the previous assigned value
since all the members share the same memory space.

This is proved by the output from lines 47 & 48. The size of the FarmYardStruct is 12 or
3 times the size of an integer. Whereas the size of the FarmYardUnion is 4 the size of a
single integer.

enum

While the enum does not strictly belong in a discussion about structures, it provides
another way to create your own data types and is declared in a similar way. An example
of an enum follows:

enum Monsters { Godzilla, KingKong, Predator, Alien , GeorgeClooney };

The above lists a set of integer constants. The first Godzilla is numbered 0 and each one
after that is one number higher. The tag Monster can now be used as a data type, e.g.

enum Monsters MyMonster;
MyMonster = Godzilla;

It is also possible to initialise the values of any or all of the sets members. E.g.

enum Monsters {Godzilla = 5, KingKong, Predator = 12, A lien};

In this instance Godzilla has the value of 5, KingKong since it is next in sequence has the
value of 6, Predator has the value of 12 and Alien has the value of 13.

Enumerations are of great use in switch statements where they can improve the human
readability of the code. For example:

switch (MyMonster)
{
 case Godzilla:
 printf(“Hey what a cool monster\n”);
 break;
 case KingKong:
 printf(“He’s not so scary\n”);
 break;
 case Predator:
 printf(“Now you’re talking\n”);
 break;
 case Alien:
 printf(“Now I am getting worried\n”);
 break;
 case GeorgeClooney:
 printf(“Agh, keep it away from me!\n”);
 break;
 default:
 printf(“No body is scared of the default mo nster\n”);
}

That brings us to the end of our discussion of structures and almost to the end of our
discussion on C programming, by now you are well and truly on your way to the ranks of
C programmers.

Summary

This concludes our very brief tutorial in C programming. We have considered the basic
data types, the most common keywords and some of the many functions available in the
standard libraries. This by no means covers the whole of C programming and if you have
come this far you may wish to go further. Part 4 of this book and particularly the
Resources section points the way to a few of the many web based resources available for
continuing your learning.

Now we shall continue with the enhancement to C, C++. This adds many features to C to
make it more suitable for the object oriented programming paradigm. To learn more
continue to the next chapter Basic C++ Programming.

Chapter 4 – Basic C++ Programming

Introduction

C++ began life as an enhancement to C. The name is derived from C’s increment
operator ‘++’ showing that C++ is the next progression of C. It was designed by Bjarne
Stroustrup while working at Bell Labs. Stroustrup wanted to make C more practical for
programming large applications. He was influenced by the features found in other
languages, particularly Object Orientation. (We will look at Object Orientation in the
section ‘Classes’). C++ improves upon C in two major ways. The first are the additions to
the language. C++ now has 62 keywords the extra ones implement new features some of
which have found their way back into C99. The second change is to the libraries. C++
introduces new Input/Output libraries, namespaces and most dramatically the STL
(Standard Template Libraries).

C++ is like C a growing language and there are different standards which have been
agreed upon and released. The first was in 1998 and the second in 2003 various features
available in the later standard such as the STL are unavailable in the 1998 standard. At
present a new standard C++0X is being drawn up.

C++ introduces the following features. Single line comments beginning with ‘//’. Name
spaces to create encapsulation. Classes to enable object oriented programming. Memory
allocation and retrieval with new/delete. Function and operator overloading. Exception
handling, templates and RTTI (RunTime Type Identification). There are many other
changes that we don’t have room for.

One of the most touted benefits of C++ is its backward compatibility with C. This is true
to a point. Most older C programs will compile without too much trouble with C++. One
problem is C++’s new keywords which may have been used as variable names or the like
in an old C program. Since the introduction of C99 the C language has also added new
keywords which don’t exist in C++ so that also breaks the compatibility.

We will continue now by looking at a basic C++ program that introduces some of the
new features found in C++.

Break down of a simple example

Like we did before in our introduction to C programming we will create a small example
in wxDev-C++ of a C++ program, compile it and see what it does. Then we will go on to
break it down and examine it in detail.

So start up wxDevC++ and create a new project. Select a ‘Console Application’ and
make sure the radio button for C++ Project is selected. Name the project ‘SimpleC++’.

Figure 4.1 – Project settings for new SimpleC++ application.

In the next dialog create a new folder called ‘SimpleC++’ and save the project there. The
IDE should now create the following basic source code for you.

1 #include <cstdlib>
2 #include <iostream>
3
4 using namespace std;
5
6 int main(int argc, char *argv[])
7 {
8 system("PAUSE");
9 return EXIT_SUCCESS;
10 }

Now change this to the following

1 #include <cstdlib>
2 #include <iostream>
3
4 using namespace std;
5
6 const int TOP_MAN = 2;
7 const int THE_PRISONER = 6;
8
9 int main(int argc, char *argv[])
10 {
11 cout << "Who are you?" << endl;
12 cout << "I am the new number " << TOP_MAN;
13 cout << ", You are number " << THE_PRISONER << endl << endl;
14 //Just a comment to show off C++'s single line comm ent style
15 for(int i = 0; i < THE_PRISONER; i++)
16 {
17 cout << "Thinking...\n" << endl;
18 }
19

20 cout << "I am not a number, I am a free man!" << endl;
21
22 system("PAUSE");
23 return EXIT_SUCCESS;
24 }

Once you have done this press <F9> to compile and run. The output should be exactly the
same as for the ‘SimpleC’ program in the last chapter. Let us now break down the code to
see the differences in the way that C++ achieves this compared to C.

Lines 1 and 2 should look fairly familiar they include the libraries we need to use. The
first difference you may notice is that the included files don’t end in a ‘.h’. I am not quite
sure why this is but I suspect that it is due to the fact that before the standards were drawn
up several compilers created their own versions of libraries that later became standard.
Thus there are deprecated headers called ‘iostream.h’ and so on.

Line 4 introduces two of C++’s new keywords using namespace . Namespaces
provide a way to create functions with the same names and parameters and use them in
the same program. <More here about namespaces>

Lines 6 and 7 show an alternative to preprocessor defines. These lines use the keyword
const which means the value of the variable cannot change. Unlike defines constants
have to have a type like int or float , etc.

Line 11 introduces us to the new C++ output function cout . cout uses << , something
about std::cout and std::endl more in input/output functions.

Line 14 comment

Line 15 declaration of int in the for loop not allowed in C.

Line 17 shows that escape characters such as ‘\n’ still work along with endl;

Basic C++
C++ (structs changed, bool data type only takes two values true and false)

Functions

C++ makes a few alterations to the good old function. Once you have got used to these
you will wonder how we managed without them for so long.

Predefined values

Remember back in the last chapter we spoke of functions which took variable length
arguments? Well C++ has added to this by allowing you to create functions that have
default values pre-filled.

This is achieved by filling in the values in the function prototype. For example

int MyFunction(int AnInteger, float AFloat = 5.4 , double ADouble = 43.7);

You don’t need to define all the values, but once you have defined one you need to define
all the others that follow it. Now you can use this function like MyFunction(2); or
MyFunction(2,5.3,64); The first usage would automatically fill in the the values
for aFloat and ADouble as 5.4 and 43.7 respectively.

Passing by reference

Before when we looked at function in C we mentioned using data types as arguments to a
function. For example:

int MyExampleFunction(int AnInt, int AnotherInt);

The problem with using this type of function is that a copy of the variable you pass to the
function is made in the computers memory. This takes time and memory. If you are
repeatedly using the same function or using a large user defined data structure this can
create an unacceptable level of overhead.

The answer to this problem in C is to use pointers. For example:

int MyExampleFunction(int * AnInt, int * AnotherInt);

However the problem with this is that pointers are inherently dangerous and their usage is
recommended to be as limited as possible. C++ provides a new feature which gives you
the best of both worlds. This is called passing by reference. To use this function you use
the ‘&’ operator before the argument names. For example:

int MyExampleFunction(int & AnInt, int & AnotherInt);

You would call this function just as you would call any other function. For example:

ReturnValue = MyExampleFunction(FirstInt, SecondIn t);

Unlike using pointers you don’t need to include a ‘&’ before FirstInt and SecondInt. But
the variables are acted on directly rather than on copies.

Inline

Sometimes you may have a function that is going to be called thousands of times in your
program. This is going to create a bottleneck in the program. However the computer has
various tricks up its sleeve to speed up execution of various parts of your program.
Adding the keyword inline before the function indicates to the compiler that you want
this function to be optimised. For example:

inline int MyExampleFunction(int AnInt, int AnotherInt);

The compiler then tries to do its best to comply. However there is no guarantee that the
function will be optimised. The only guarantee is that the compiler will try.

Overloading

For me this is the best addition to functions. Sometimes you will write two or more
functions that do almost exactly the same thing, but take different arguments. For an
example consider the case where you have three functions which return the sum of their
arguments. The first takes two ints, the second two floats and the third two doubles. The
question is what to name these functions. In C you can’t have two functions with the
same name so you may end up with:

int SumInt(int AnInt, int AnotherInt);
float SumFloat(float Afloat, float AnotherFloat);
double SumDouble(double ADouble, double AnotherDouble);

How much simpler if you could simply call the function Sum and then pass in any of the
three arguments. Well with C++ you can. For example:

int Sum(int AnInt, int AnotherInt);
float Sum(float Afloat, float AnotherFloat);
double Sum(double ADouble, double AnotherDouble);

This makes for much neater solutions (it also saves us lazy programmers from wearing
our brains out thinking up new function names). There are not many rules for creating
overloaded functions. The rules are:

1. The function must differ on more than just the return type. This is not allowed:

int Sum(int AnInt, int AnotherInt);
float Sum (int AnInt, int AnotherInt);

The reason for this is the compiler would not be able to tell which function you intended
to call.

2. The arguments must not be ambiguous. This is not allowed:

int Sum(int AnInt, int AnotherInt);
int Sum(int AntInt, int AnotherInt, int OneMoreInt = 40);

The reason is that the compiler would not know whether the line ReturnValue =
Sum(4, 6); was supposed to call the first function with two arguments, or the
second function with the third argument as the default value.

3. You have to send the author of this book $20 every time you use an overloaded
function. (Okay I lied on the last one, but feel free to do as you wish).

So as you can see there have been some great improvements in the area of functions.

Memory allocation

I’m sure you will remember back in the last chapter we touched on memory allocation.
To achieve this in C we needed to make use of various functions alloc , malloc , etc.
C++ takes a different approach and provides two new keywords new and delete to
enable you to manage allocating and de-allocating memory.

Allocating memory

Instead of malloc we have the keyword new, this returns a pointer to a memory address
where the new block of memory resides.

De-allocating memory

Once you have finished with the memory you are using you need to tell the computer that
you don’t need it anymore. This is done in C with the function free . In C++ we gain the
keyword delete . For instance to free the two blocks of memory allocated in the
previous section we would use delete in this way.

WARNING: It is important not to mix C and C++ memory management functions. For
example don’t write.

MyClass * AClass = new MyClass();
Free(AClass);

If you use new then delete the memory with delete . If you use malloc or alloc
then delete the memory with free .

Classes

Classes are an essential part of object oriented programming. Basically OOP is all about
creating models of real life objects and using these within your program. For instance if
you were creating a program that imitated a lighting system, you might want to create a
light model, a switch model, maybe a timer model or light sensor model. These models
are called objects.

So what does an object consist of? It consists of data, things the object ‘knows’ or
attributes of the model, it also consists of methods, the way an object acts or what it can
do. For example a child model may have the data HairColour, EyeColour, Age, Height

and Weight. In addition it can do things like walk, talk, eat and sleep. Obviously this is a
very basic model of a child.

One advantage of using objects is a thing known as encapsulation. All the data and
methods relating to an object is contained within it. It is possible to arrange things that
only the object can access or alter its data. Looking again at the child example, you might
arrange for a method called Birthday to increment the child’s age by one. It would not
make sense for the age to be incremented by any object other than the child.

There are other benefits such as inheritance which we will discuss later.

Basic Classes

So what does an object in C++ look like? For a start objects in C++ are called classes. We
will start with a very simple example based on our child model.

class Child
{
 public:
 string HairColour;
 string EyeColour;
 int Age;
 int Height;
};

If you are thinking “Hey! that looks just like a struct”, then you would be correct. At this
point there are two differences the first is the use of the keyword class instead of struct.
The second is that keyword public:. There are three such keywords public:, protected: and
private:. At this point we will consider the first and last of these, leaving protected: to our
discussion of inheritance later on.

The keyword public: means that all data and methods that follow this can be accessed by
other objects or from within your program. The keyword private: means that only the
class can access this data or methods. Before continuing I had better start using some of
the correct terminology. The data and methods contained in the class are called members,
therefore the class has member data and member functions (or methods). To illustrate the
difference between the public: and private: keywords let us consider how to access the
member data in a class. First we need to create an instance of our class, then we can
access its members. This is similar to using a struct.

Child MyChild;
MyChild.Age = 5;

This would work with the above class and a program using the above code would
compile ok. However if we now change the class declaration to

class Child
{
 string HairColour;
 string EyeColour;
 int Age;
 int Height;
};

If you tried using this with the above code you would get a compile time error, why? By
default all members are private so the above class is equivalent to

class Child
{
 private:
 string HairColour;
 string EyeColour;
 int Age;
 int Height;
};

So trying to use MyChild.Age = 5; is an error because only the class can access the
member data Age, not external code which is what we are trying to use. It is good
programming practice to declare member variables as private since it prevents external
code from accidentally modifying these values. You may be asking at this point well how
do I modify the values? The answer is by writing accessors (sometimes called setter and
getter functions. If we do this then above class now looks like this.

 class Child
{
 private:
 string HairColour;
 string EyeColour;
 int Age;
 int Height;
 public:
 void SetHairColour(string hairColour){HairColour = hairColour;};
 string GetHairColour(){return HairColour;};
 void SetEyeColour(string eyeColour){EyeColour = eyeColour;};
 string GetEyeColour(){return EyeColour;};
 void SetAge(int age){Age = age;};
 int GetAge(){return Age;};
 void SetHeight(int height){Height = height;};
 int GetHeight(){return Height;};
};

Now we can write MyChild.SetAge(5); and the code will work without errors.

Inheritance
Friends
Polymorphism
Typecasting
Type identification
Input/Output

In C we saw that everything is regarded as a file. C++ takes a different approach to input
and output and regards everything as a stream. Using the power of classes an abstract
stream class is defined and all input/output streams are derived from it. This means that
they all share a common interface. The best news is that they are 100% easier to use than
C’s printf/scanf functions.

Input
Output
Strings
Namespaces

Exceptions

Templates

Chapter 5 – Finding your way around the IDE
To be written

Chapter 6 – Debugging with wxDev-C++
Some time ago I read an article that provided the mathematical proof that every computer
program contains bugs. Back then I was still fairly idealistic about programming and I
thought surely not. Now I agree, all but the most trivial programs contain bugs. Even the
operating system you are using to run the program to read this contains bugs.

I’m not going to go into the history of why bugs are called bugs. I’ll leave that as
homework. Instead I will go into the genus of bugs. There are three main types. Some
will cause your program to fail during the compile phase. Some will cause it to fail during
the link phase and some will show up when the program runs.

These bugs come in roughly three categories critical, medium and low. Critical bugs are
those that cause your program to wipe all the data from your user’s hard drives. Medium
bugs are those that crash the program occasionally. Low bugs are those that may irritate
users but cause no real problems, like a text control that is one pixel lower than the
others.

In any professional application far more time is spent fixing bugs than any other area of
program development. One thing that all bugs have in common is that they can be hard to
trace, especially for those that only show up at runtime. The purpose of this chapter is to
show you some ways for tracking down and squashing those bugs. We will especially
look at the tools provided by wxDev-C++.

Compile Time Bugs

Link Time Errors

Run Time Errors

DevC++ Related FAQs

Q. What is this I hear about an Easter egg in Dev-C++?

A. One of the original developers created an Easter egg in version 4 of Dev-C++.

This has survived in a slightly different form in the latest version and in wxDev-
C++. To access the Easter egg in the latest version

Start Dev-C++ (or wxDev-C++).
Open the about box, accessed via Help|About Dev-C++…
Click on the picture at the top of the dialog and drag it down over the
‘Authors’ button.
A fish will appear moving across the dialog.
Depending on your speed and the speed of your computer you can try
clicking on the fish. If you manage the fish will change direction.

Q. Why is my program not recompiled when one of the header files is altered?

A. Normally if a source file is changed the compiler will pick this up and recompile

the project. This is caused by setting the option in ‘Use fast but imperfect
dependency generation’ in Tools|Compiler Options. This speeds up compilation
of the project by missing out some steps, but causes changes in the header files to
be missed.

The long term solution is to uncheck this option. If changes to header files are rare
you can choose to recompile the whole project this will include the changed
header files.

Figure x.x – Use fast but imperfect dependency generation

Part 2

Basic Development with

wxWidgets and wxDev-C++

Chapter 7 – Creating a Basic HTML Editor

Introduction

So far we have covered C and C++ programming using just the DevC++ features of the
IDE. But the features added by Guru Kathiresan and the other wxDev-C++ developers
have created a RAD (Rapid Application Design) application of great power.

Part 2 takes you through using wxDev-C++ to develop programmes and introduces you
to the various aspects of using it to design your own programs that look and act as you
wish. In this chapter we will begin by designing a small HTML editor. This is nothing
fancy, there is no syntax colouring and the like. What we will create is a programme with
a basic menu, status bar, and the ability to save and load files. The special feature of this
program is that it has two resizable windows. The bottom window is where you type html
formatted text, the top window will update dynamically to show what this would look
like in a web browser.

So let us start.

Starting a wxWidgets Project

We already know how to start a new project, so use your favourite method.

 From the ‘New Project’ dialog, choose ‘wxWidgets Frame’.
 Make sure that the ‘C++ Project’ radio button is selected
 Enter ‘HTMLEditor’ as the project name.

Figure 7.1 – Project settings for HTML editor

 Create a new folder called 'HTMLEditor within your ‘Projects’ folder.

You will be greeted with the unfamiliar ‘Create New Project’ dialog. For now alter the
settings as follows, except you can put your own name where it says ‘Sof.T’.

 Then click on the [Create] button.

Figure 7.2 – Create New Project dialog

The IDE will flicker for a bit as various pages open, and finally the form designer will
open. The IDE will look like this:

Figure 7.3 – The IDE showing the form designer

The following section will show you how to use this to create your killer application.

Using the Form Designer

In the centre is a dark grey window. This is the visual representation of your application.
To the right of this is the palette showing the different components you can use. To the
left is the property editor which you can use to change various aspects of your form. Just
above this is a combo box which drops down to show all the components your application
uses and allows you to quickly choose between them.

We will start by placing the components we need for our program. The total list will be a
menu bar, status bar, splitter window, text control, and html control. So let us start by
adding these. First will be the menu bar. What do you mean you can’t see a menu bar?

If you look at the component palette on the right, you will see that it has a scrollbar on its
right hand side., Using the scrollbar, many more controls become visible and you need
to scroll down to locate them. Alternatively go to the combo box where it says ‘All’ and
use this to reduce the number of components offered. Using either of these methods:

 Find and select ‘Menu’.

There, that is better. Now click on the menu bar component. This will now be highlighted
in blue.

Figure 7.4 – Selecting a menu component

 Click on the dark grey form in the centre of the designer.

You will notice two things: the first is that a small box with the picture of the menu bar
has appeared on the form with 8 little squares around it. The other thing is that the
‘Menubar’ item on the component palette is no longer highlighted blue. The small box is
a visual holder for the menu bar. Several components show up like this and it is nothing
to worry about; it is quite normal and has nothing to do with the physical positioning of
the component.

We will proceed by placing the other components we need onto the designer window.
Next is the status bar. You will find this under ‘Controls’ and you may need to scroll
down as it is near the bottom.

 Click on 'status bar', and when it is highlighted, click on the form.

You will notice that this time it has automatically jumped to the right place on the bottom
of the screen.

Now we want a splitter window. This can be found on the palette under ‘Window’.

 Find and select 'splitter window' and then click on the form.

The splitter window will automatically fill the form. Now we want a html window. This
is on the same palette so:

 Select 'HTML window' and drop it onto the splitter window.

You may find the form suddenly shrinks and scrollbars appear on the right and bottom
sides, don’t worry as this is a design feature. Finally we want a text control, which is
found under controls. What we want is called ‘Memo’. This is actually just a text control
with multiple lines, the name is a part of wxDev-C++’s Delphi heritage.

 Select the ‘Memo’ component and drop it onto the form.

You will find that the Memo control jumps to the left of the HTML control. This is not
what we want. To sort this out click on the Splitter Window so the form looks like this.

Figure 7.5 – The Design Form with the Splitter Window selected

We now need to find the Property Inspector on the left of the IDE

Figure 7.6 – The Property Inspector

Find the property Orientation

Figure 7.7 – The Orientation property

Change this to wxVertical.
Click on the Design Form to see the change.

We will learn more about using the Property Inspector in the next section. For now we
have a form like the following.

Figure 7.8 – The completed form in the design window

Now for the moment of truth.

 Press <F9> to compile and run the application.

You will notice that the compiled application looks somewhat like the design form. The
text has disappeared from the html window but not from the text control. Also notice that
although we dropped a menu bar on the form nothing shows up on the compiled
application.

Figure 7.9 – The compiled application.

In the next section we will look at configuring the form in the designer to make it more
like a real working application.

Altering Properties

If the application is still running, close it, just like any other windows application, by
clicking on the red close button on the caption bar. Now we can start to configure our
components in the form designer.

First we will correct that text control. In the form designer:

 Select the text control by clicking on it.

You can tell if it is selected because the eight little boxes will appear on the sides and
corners (the bottom ones may be hidden by the status bar). These boxes are called
handles. You will note that when you select a component the text changes in the combo
box above the Inspector. This text gives you the component name followed by the
component type. E.g. when the text control is selected it changes to
WxMemo1:wxTextCtrl. WxMemo1 is the controls name and wxTextCtrl is its type. The
contents of the property editor also change as different components are selected, to reflect
the properties each component contains.

So having selected the text control the Property Inspector should look like this.

Figure 7.10 – The Property Inspector for the text control

First let us get rid of that text that shows up in the control. If we look at the property
editor the first column contains the property names; these are in black and can’t be
altered. The second column with the blue writing contains the values for these properties
and can be adjusted. At first it isn’t easy to see what alters this. The property we need is
under ‘Strings’. If you

 Click in the second column, next to ‘Strings’ where it says ‘Edit Strings’

a small button with three periods in it will appear.

 Click on this [...] button to activate the text editing dialog.

Figure 7.11 – The string editor

Any text shown in this editor will appear in the text control.

 Delete all of the text control contents.
 Press the [Ok] button.

You will notice that the text has disappeared from the text control in the form designer. If
you want to check that it has also disappeared from the compiled application, you can
compile and run it again.

Now let us sort that menu bar out. Why didn’t it show up? The reason for this is that it
doesn’t contain anything yet. To correct this:

 Select the menu bar by clicking on the small square that represents it.

This time the property editor only shows five items. The one we want is called ‘Menu
Items’, just like the ‘Strings’ property in the text control clicking next to this produces a
button with three periods in it.

 Click on the [...] button to activate the following dialog.

Figure 7.12 – The menu bar editor

 Click the [Add Item] button.

Suddenly the dialog fills with all sorts of information that is generated for you. The box
labelled ‘Caption’ now contains the value ‘MenuItem1’;

 replace 'MenuItem1' with ‘&File’ and press <Enter>.

The text now changes on the Menu Items box and the ID Name also changes.

 Click on the [Apply] button.

 (The reason for using ‘&’ in the menu item names is to do with mnemonics and will be
explained later in Chapter 12 under ‘Mnemonics and Keyboard Accelerators’).

Now we have created our File menu we want to add some items to it. To do this:

 Click on the [Create Submenu] button.

This produces a menu item under the File menu and inset a little to show it is a child of
the File menu.

 Change the caption to ‘&Open\tCtrl+O’ and press <Enter>.
 Click on the [Apply] button.

Repeat this procedure this time changing the caption to ‘&Save\tCtrl+S’.

(The reason for using ‘\tCtrl+O’ in the menu names is to do with keyboard accelerators
and will also be explained in Chapter 11 under ‘Mnemonics and Keyboard
Accelerators’).

Now we want to add a separator to the menu.

 Click on the [Create Submenu] button.

This time in the top combo box labeled ‘Type’:

 Select ‘Separator’.
 Click on the [Apply] button.

Finally we want to add an exit entry to the menu. For the last time:

 Click on the [Create Submenu] button.
 Alter the caption to read ‘E&xit’.
 Finally click on the [OK] button.

WARNING: If at anytime you are creating a menu bar you click the [Cancel] button, all

the work you have done up to this point will be lost. This can be extremely
irritating when you have created a large complex menu system. If you
have made a mistake it is better to continue. Click on the [OK] to save the
work you have done so far, then reopen the menu bar dialog to make
changes.

To see the result of all our altering of properties:

 Press <F9> to compile and run.

You will notice that we now have a menu bar. Click on File and you will see the newly
created menu drop down. It doesn’t do anything yet, but it will by the end of the next
section.

Figure 7.13 – Our new menu bar

Before we start coding we need to add two more components.

 Change the component palette to ‘Dialogs’.
 Select and drop an OpenFileDialog and a SaveFileDialog on to the form.

After adding them to the form:

 Select each in turn and alter the Property ‘Extensions’ from ‘*.*’ to ‘*.htm’.

Now we can move on to the next part ‘Adding Code’ and actually get this to do
something.

Adding Code

GUI programming relies on what is called ‘Event based’ programming. Basically once
the program starts it just sits there in a loop, waiting for an event to take place. When an
event does take place it looks to see what, if any, code it should execute in response.
Events can be anything from starting a programme, to clicking within the programme
window with a mouse, resizing the window or leaving it to interact with a different
programme.

So to get our programme to do anything, we have to decide what events to respond to,
and what to do in response. We will start with an easy one. At present our menu does
nothing. Lets change that and make our programme close when we click ‘Exit’ in the file
menu.

To do that:

 Select the menu bar component.
Click on the [Edit MenuItems] button.

If the menu tree on the left hand side looks like this. Then click on the ‘+’ sign next to it
to show all the menu entries.

Figure 7.14 – Click the ‘+’ sign to expand the menu tree

 Select the ‘E&xit’ entry.
 Click on the [Edit] button on the bottom of the dialog.

Now on the right of the dialog near the bottom look for the combo box labeled
‘OnMenu’. This control holds the menu event that occurs when we click ‘Exit’ on the
menu.

 Click on the [Create] button (next to the combo box) .

The following dialog will pop up.

 Click on the [OK] button.

Figure 7.15 – The create new function dialog

 Click the [Apply] button
 Click the [OK] button.

If the designer does not take you directly to the new function then click on the tab labeled
‘(*)HTMLEditorFrm.cpp’ (in the editor window). The page should open with the cursor
in the body of a function as illustrated below.

94 /*

95 * Mnuexit1018Click
96 */
97 void HTMLEditorFrm::Mnuexit1018Click(wxCommandEvent& ev ent)
98 {
99 // insert your code here
100 }

Under the line

 // insert your code here

add the line

 Destroy();

The Destroy function will cause the application to close.

 Press <F9> to compile and run.
 Go to File|Exit to see that the code we added works.

Ensure the form designer has focus by clicking on the tab labelled
‘HTMLEditorFrm.wxform’ in the editor window.

We now want to add the functionality that creates the text editor part. Although not the
best way to do this, we will update the HTML window every time the user alters or
updates the contents of the text control. So it is an event within the text control we want
to act upon.

 Select the text control.

If you look at the property editor you will see another tab called ‘Events’ nestling behind
it.

 Click on the 'Events' tab to discover what events the text control can respond to.

You should see something like the following. Remember we want to act when the user
updates the text control. So I guess the event ‘OnUpdated’ is the one for us.

Figure 7.16 – The event editor

To create a new function to respond to this event,

 Click in the empty cell in the right hand column.

A drop down list box should appear listing all the functions wxDev-C++ has created for
us already. We don’t want to use any of these so:

 Select the top option <Create New Function>.

Figure 7.17 – List of available functions in the event editor

You should be taken automatically to the new function, but if not, click on the tab labeled
‘(*)HTMLEditorFrm.cpp’. There you will see a new function similar to the following.

105 /*

106 * WxMemo1Updated
107 */
108 void HTMLEditorFrm::WxMemo1Updated(wxCommandEvent& even t)
109 {
110 // insert your code here
111 }

wxDev-C++ has kindly created the function skeleton for us, but what are we going to add
inside it. This time I am not going to tell you straight out. I want you to learn to make use
of one of wxDev-C++’s greatest provisions, the wxWidgets help file. So in the IDE go to:

 Help|wxWidgets
 Or just press F1.

The help file should appear:

Figure 7.18 – The wxWidgets file help, this should be your greatest friend

Our objective is to alter the contents of the HTML window based on the contents of the
text control. So let us first find out how to alter the HTML window. Under the 'Contents'
tab on the left hand panel of the help screen, expand the option ‘Alphabetical class
reference’ by clicking on the ‘+’ next to it. A long list of components all beginning with
‘wx’ will be displayed. How do we know what one to look for? Well at a rough guess let
us scroll down to wxHtml. There are several entries beginning with this, but look closely

and there, near the end, is our one, ‘wxHtmlWindow’. Click on the entry
‘wxHtmlWindow’ and read the text that fills the right hand pane.

Figure 7.19 – Looking through the description of the wxHtmlWindow

As we read through the description of this control we reach the sentence which says,
“Once the window is created you can set its content by calling SetPage(text),
LoadPage(filename) or LoadFile.”. Now to me the last two options tell me that they open
files, whereas the first one ‘SetPage(text)’, says that we can set the contents of the HTML
window by calling this function with some text. To confirm this click on the link
SetPage(text) and read more about it.

So now we can add SetPage(text) into our new function. First we need the name of the
control we are working with. To get this go to the form designer and hover over the
HTML control. A pop up should appear saying ‘WxHtmlWindow1:wxHtmlWindow’.
Remember the bit before the colon is the component name. So go back to our function
and under the line:

 // insert your code here

add the code

 WxHtmlWindow1

WxHtmlWindow1 is a pointer to an instance of HtmlWindow, so we need to add ->
finally add the new function we found in the help file

 SetPage() .

The completed command should look like:

 WxHtmlWindow1->SetPage()

So far so good, but we now need some text as an argument to the function.

We want to get the text from the text control to pass to the HtmlWindow. Try scrolling
down the list and look for ‘wxMemo’. Having trouble? Remember what I said earlier
about ‘Memo’ being a hangover from Delphi? To find what to look for, try the trick of
hovering over the component on the editor.

Figure 7.20 – Discovering the name and type of a control

The format is <Control Name>:<Control Type>, so the section after the colon is the
information we want. Look in the help file for ‘wxTextCtrl’. When you click on
wxTextCtrl there is very little information given to you. Expand the left hand tree list of
contents, by clicking on the ‘+’ sign next to wxTextCtrl. Now you can see all the
functions contained in the component. Look down the list for suitable candidates. We are
looking for something most likely starting with get. Since there is no ‘GetText’ or
anything like it, the nearest appears to be ‘GetValue’. Click on this and read about it to
make sure. The first line should convince you. ‘Gets the contents of the control.’

To add this to our function, inside the braces ‘() ’of ‘ SetPage ’, add the name of the
text control, and remembering it is a pointer, add the new function we found. You should
end up with this code.

108 /*
109 * WxMemo1Updated
110 */
111 void HTMLEditorFrm::WxMemo1Updated(wxCommandEvent& even t)
112 {
113 // insert your code here
114 WxHtmlWindow1->SetPage(WxMemo1->GetValue());
115 }

So let us carry on coding. What do you mean you want to see what this has done. Very
well, let us compile and run it first.

 Press <F9>.

If you don’t know about HTML tags then enter the following: ‘<h1>wxWidgets are
great</h1>the designers of wxDev-C++ are <u>GREAT</u> too!’ . You may
want to expand the window to see the full effect. Or if you have downloaded the sample
code to accompany the book there is a file called ‘sample.htm’ included for you to open.
You will need to maximize the window to see the result.

Now can we carry on? We have two more functions to create. One to load HTML files
and one to save HTML files. In preparation for this we created two menu entries called
“Load” and “Save”. The actual work will be carried out by the Open/Save File Dialogs
we dropped on the form earlier. We will create the functions we need as we did for the
“E&xit” menu entry.

 Open the menu dialog editor by selecting the component that represents the menu
bar.
 Click on the ‘Edit MenuItems’ cell.
 Expand the tree list of menu entries.
 Select the entry “&Open”.
 Click on the [Edit] button.
Next to the ‘OnMenu’ combo box, click on the [Create] button.

On the dialog that pops up

 Choose the [OK] button,
 Click on the [Apply] button.

Repeat the same routine for the “&Save menu” entry.

When you have completed this

Click the [OK] button.

The following code should have been generated for you.

116 /*
117 * Mnuopen1015Click
118 */
119 void HTMLEditorFrm::Mnuopen1015Click(wxCommandEvent& ev ent)
120 {
121 // insert your code here
122 }
123
124 /*
125 * Mnusave1016Click
126 */
127 void HTMLEditorFrm::Mnusave1016Click(wxCommandEvent& ev ent)
128 {
129 // insert your code here
130 }

Alter these functions to look like the following. I will explain more about this code in
Chapter 9 in the section titled “Dialogs”. But I would recommend opening the
wxWidgets help and looking at the components and functions used in the following code
to understand how they work.

116 /*
117 * Mnuopen1015Click
118 */
119 void HTMLEditorFrm::Mnuopen1015Click(wxCommandEvent& ev ent)
120 {
121 // insert your code here
122 if(WxOpenFileDialog1->ShowModal())
123 {
124 WxMemo1->LoadFile(WxOpenFileDialog1->Ge tPath());
125 }
126 }
127
128 /*
129 * Mnusave1016Click
130 */
131 void HTMLEditorFrm::Mnusave1016Click(wxCommandEvent& ev ent)
132 {
133 // insert your code here
134 if(WxSaveFileDialog1->ShowModal())
135 {
136 WxMemo1->SaveFile(WxSaveFileDialog1- >GetPath());
137 }
138 }

That is it for this programme, so press <F9> to compile and run. Try loading and saving
‘*.htm’ files. Alter the text in the lower text control and see how this is reflected in the
upper HTML control.

By now I hope you are impressed by what wxDev-C++ and wxWidgets can do for you.
The amount of code you have written is comparable to the C and C++ samples and they
did very little. This program achieves so much more, with no more effort.

You may wish to extend this programme to have a toolbar, or buttons to insert various
HTML tags, or other amazing features. If you do want to, then go ahead. If you need to
know more about how to achieve this, then read on.

Chapter 8 – Working With Frames and Dialogs

Introduction

The basis of any GUI program no matter how simple is the window or windows that you
will use. wxWidgets makes a distinction between Frames and Dialogs, although they can
for the most be used interchangeably. Dialogs generally are used for allowing users to
make choices or answer questions. It is usual for dialog to be non resizable and to be
displayed Modally. A modal dialog means that the user cannot interact with any other
frames or dialogs until this one is closed. Frames are generally used for the main
application windows containing menus, toolbars, status bars and the like.

In this chapter we will look at creating new projects and the difference between Frame
and Dialog projects. We will look at the different property options for frames and dialogs.
We will also look at how to add more frames and dialogs to an existing project. Finally
we will start to build a sample application.

Before we continue it is necessary to cover a point which causes confusion for some new
users. wxDev-C++ has been designed so that it can be used as a designer of forms and
dialogs for use outside of a project. As a result users are presented with the following
dialog when they start a new project.

Figure 8.1 - The New menu for creating new projects, source files and forms.

Many users have clicked on the option “New wxFrame” and designed a nice GUI.
However they are surprised when they try to compile since they get a load of linker
errors. The reason for this is that there are no project settings so the linker doesn’t know
where to look for the wx libraries it needs. The menu options New wxDialog and New
wxFrame are there to either add new frames and dialogs into an existing project or to
design frames and dialogs for use elsewhere. To create a new project containing a frame
or dialog you need the “Project…” option.

Creating a New Project

This is where it all begins. So far we have created a number of new projects and should
be getting familiar with some of the options available. Mostly these projects have been
command line programs with the exception of our HTML editor example. So let us get
started with how to create new frame or dialog projects and the difference between them.

Frame Project

In this example we will create a basic ‘Hello World’ program. To start

Select the menu File|Project

The following dialog will be displayed

Figure 8.2 – The new project dialog

Clicking on each of the icons will give you a brief description of what the project type
includes. Since we want to create a frame project we need to carry out the following
steps.

Click on wxWidgetsFrame.
Change the project name to FrameProject.
Make sure that the radio button next to C++ Project is selected.
Click on the [Ok] button.

This will result in the dialog closing and a new dialog being opened up which looks like
the following.

Figure 8.3 – The save project dialog

Just as we have seen before this dialog gives us the option to save our project to a specific
locate. If you have been following all the tutorials in this book

Go to your project folder
Create a new folder called FrameProject
Enter this folder
Click on the [Save] button

After the save dialog closes a new dialog will open.

Figure 8.4 – The new frame dialog

There are a lot of options here so let us look at them one by one.

Class Name

Since every new frame you create is derived from the wxFrame class it has to be
given its own class name. This is automatically generated for you, but you have
the option to change it. If you change it there are certain rules to remember. A
Class name can only contain alpha-numeric characters and underscores. In
addition the class name must not be a keyword, must be unique and cannot begin
with a number.

Let us try to alter the class name to an invalid name.

Enter “2 Frame ProjectFrm” in the class name field
Click the [Create] button

A warning dialog is displayed like the following

Figure 8.5 – Invalid class name warning dialog

If you click [No] a remainder pops up to alert you to the problem.

Figure 8.6 – Dialog to remind you what a valid class name can contain.

If you choose yes wxDev-C++ replaces all invalid characters with underscores,
this may make you class name look strange, but at least the compiler will not
complain.

Figure 8.7 – An automatically corrected class name.

For this example we want the default value for the class name so

 Fill the Class Name field with FrameProjectFrm

File Name

This field holds the name of the file that the information about your frame class
will be saved in. Every frame or dialog created by wxDev-C++ is saved in
separate files. In fact there are three files for each frame or dialog. They all have
the same name only the extension is different. One ends in .wxform this is the
information needed by wxDev-C++ to store what your file looks like in the
designer. Then there are two source code files the header file ends in .h and
contains the declaration of your frame class and the other ends in .cpp and
contains the definition of your class.

Once again you can alter this to suit your own purposes. Should you choose an
invalid file name wxDev-C++ will warn you and offer to automatically correct
this. For this exercise we will accept the default value.

Figure 8.8 – Dialog to remind you what constitutes a valid file name

Save To

This field contains the location you elected to save the project to in the previous
dialog. It is generally best to leave this field alone unless you have a definite
reason to save the code for your frame in a different location.

Title

The contents of this field are used as the caption for this frame. The caption is the
written part on the top of the border.

Figure 8.9 – The caption part of a frame.

For this example we will leave the caption alone.

Author

This field contains your name. wxDev-C++ will try to determine this name
automatically. The contents of this field are used for adding copyrighting
information to the source code and project files. If this field is incorrect or you
want to use different copyright information change this to suit.

Window Style

This section contains a variety of check box which alter the look and behaviour of
your frame. Some of these are filled by default. We will look at each of the
options in turn and see what they mean.

Use Caption

This option corresponds to the flag wxCAPTION. The help documentation
says that setting this option puts a caption on the frame. In fact under
windows if you don’t have this set your frame will display without a
border.

We will leave the caption option checked.

Resize Border

This option corresponds to the flag wxRESIZE_BORDER. This option
means the user can drag the edges of the frame to make it larger or smaller.

We will select this option by ticking it.

System Menu

This option corresponds to the flag wxSYSTEM_MENU. This determines
if the icon is shown in the top left of the windows. If it is shown then a
menu is available by clicking on it. This option also affects whether the
minimize, maximize and close buttons are shown or not.

Figure 8.11 – Difference between a frame with system menu set or not.

We will leave this option selected.

Figure 8.10 – Difference between a frame with caption set or not.

Thick Border

This corresponds to the flag wxTHICK_FRAME. Which the
documentation tells us display a thick frame around the window on
Windows and Motif applications. Personally I have never seen this make a
difference on Windows applications. It appears this flag relates to the
Windows flag WS_THICKFRAME which has had little meaning since the
very early days of Windows.

We will leave this setting as it is.

Stay On Top

This option corresponds to the flag wxSTAY_ON_TOP. This only works
on Windows at the present and means that this window will float above all
other windows. This is useful if you are designing a window that will be
used as a toolbox, or a dialog that the user must not ignore.

We will leave this setting as its default value.

No Parent

This option will be covered in the next section on dialog applications since
it has no relevance to frames.

We will leave this setting at its default value.

Min Button, Max Button, Close Button

I will consider these three options together since they are all related. They
correspond to the flags wxMINIMIZE_BOX, wxMAXIMIZE_BOX and
wxCLOSE_BOX. These flags determine if the frame displays these boxes
or not as shown below.

All options selected

Min Button unselected

Max Button unselected

Close Button unselected

We will set the ‘Max Button’ option and leave the others as is.

Selected Profile

This drop down box offers you a choice of profile to use. This affects what compiler will
be used to compile this project. At present you have a choice between Microsoft’s
compiler and the MingW port of GCC.

Alter the contents of the drop down box to reflect the compiler you want to use.

Now that we have looked at the options it is time to create the project.

Click on the [Create] button.

The dialog will close and the form editor will open.

Figure 8.12 – The form designer showing a new frame

So now that we have a new frame what can we do with it? Well the first thing to try is
compiling it.

Press <F9>.

After compiling the window will appear looking something like this.

Figure 8.13 – The compiled version of our frame.

Wait a minute, that does not look like our frame in the designer, the width and height are
all wrong. The reason for this is that the code to change the compiled frame is not
generated until you make a change to the frame. We can try this by dragging the edge of
the frame slightly then trying to compile again. This time the result should look like the
frame in the designer.

There are two ways to alter the frame one is by direct manipulation; the other is by
changing properties.

Direct manipulation of the frame

Direct manipulation of the frame is limited to dragging the frame by the title bar to a
different location in the designer. This alters the Top and Left properties of the frame,
which affects where the compiled frame appears on the screen. It is also possible to drag
the borders of the frame to resize it. This affects the Height and Width properties of the
frame.

Changing frame properties

The properties for the frame are found in the Property Inspector shown below.

Figure 8.14 – The Property Inspector

If the Property Inspector is not showing the frame then click on the drop down box and
select the option that ends in :wxFrame.

Figure 8.15 – Selecting the frame in the Property Inspector

Now let us consider the properties shown in Figure x.x one by one. We will alter some of
these to create our example project.

Center

The property Center is a Boolean property. This means that is take a true/false
value. If Center is set to true the function Center() is called when the frame is
created. This means the frame will be centered on the monitor when it is created.
If it is set to false the frame will be created at the location on the monitor
specified by the properties Top and Left.

We will set it to false.

Class

The property Class allows you to use custom classes. We will cover the use of this
property later in the book in Chapter 13 - Creating and using other controls.

Font

This option sets the font that will be used by this frame and controls that are
children of this frame.

We will leave this setting alone since we wont be adding any controls in this
chapter.

Frame Style

A style in wxWidgets affects how a control looks and works. Some styles are
specific to certain platforms others are more generic. A wxFrame has two sets of
styles, the general styles applicable to wxWindow classes from which it derives
and it’s own unique styles. This section is devoted to the frame’s own unique
styles.

By default the Frame Style property is shown as a long line of flags. This property
can be expanded by clicking on the ‘+’ just before the caption Frame Style. A full
list of the styles will then be shown.

Figure 8.16 – The expanded list of frame styles

Some of these styles we have already met when we created the frame. They are all
Boolean values, that is true or false. If the property is set to true the flag will be

added to the list of flags passed to the frame when it is created at runtime. We will
now consider each style in turn.

Flag Name Flag behaviour or style
wxCAPTION

We have already come across this flag
when we created the frame. Remember
setting this to false will remove not only the
caption, but also the border from your
frame.

wxCLOSE_BOX This is another property we have already
seen it enables or disables the close box on
the frame.

wxFRAME_EX_CONTEXTHELP This flag is supposed to add a query button
to the frames caption bar. However the way
it is currently implemented in wxDev-C++
means that it does nothing.

wxFRAME_FLOAT_ON_PARENT This cause the frame to float above its
parent frame which means it will always
appear on top of its parent.

wxFRAME_NO_TASKBAR This flag causes a frame to be created
which does not show up in the taskbar. On
the Windows platform the frame will be
minimized to the corner of the desktop.

wxFRAME_SHAPED This flag creates a frame which may be
displayed with areas cut out such as some
splash screens.

Figure 8.17 – The wx shaped frame sample

wxFRAME_TOOL_WINDOW This creates a frame with a smaller basic
caption area and close button. This type of
frame is often used for tool box style
windows.

Figure 8.18 – A tool window frame

wxMAXIMIZE This flag causes the frame to be displayed
in a maximized state.

wxMAXIMIZE_BOX This is another property we have already
seen it enables or disables the maximize

box on the frame.
wxMINIMIZE This flag causes the frame to be displayed

in a minimized state.
wxMINIMIZE_BOX This is another property we have already

seen it enables or disables the minimize box
on the frame.

wxNO_3D This flag overrides the native 3D drawing
effect for this frames child components.

wxRESIZE_BORDER We have already seen this flag when we
were creating the frame. It creates a frame
that the user can resize.

wxSTAY_ON_TOP This is another flag we have come across. It
causes this frame to stay on top of all other
windows. You can see this operating with
Windows Task Manager.

wxSYSTEM_MENU This is another flag we have seen which
removes the icon in the corner of the frame
as well as the menu attached to it. This also
has the side effect of removing the
minimize, maximize and close buttons.

wxTHICK_FRAME We also encountered this flag earlier. As
mentioned before it has no result and is the
same as setting wxRESIZE_BORDER.

General Style

The general style property contains the styles that apply to all wxWindows
controls. Since wxFrame derives from this class it also has the ability to apply
these styles.

To access them click on the little cross ‘+’ besides the property ‘General Style’ in
the Property Inspector. The complete list will drop down as shown below.

Figure 8.19 – The full list of General Style properties

All these styles are Boolean values. If the property is set to true the flag will be
added to the list of flags passed to the frame when it is created at runtime. We will
now consider each style in turn.

Flag Name Flag behaviour or style
wxALWAYS_SHOW_SB If window has scrollbars then this flag

causes them to be permanently
displayed even when they are not
needed.

wxCLIP_CHILDREN This flag removes flicker that is
caused when child controls are
painted.

wxDOUBLE_BORDER This has no effect on frames.
wxFULL_REPAINT_ON_RESIZE This flag causes the whole frame to be

repainted when it is resized. This flag
only needs to be used when there are
redrawing problems.

wxHSCROLL Causes the window to display a
horizontal scrollbar.

Figure 8.20 – Frame displaying a
horizontal scrollbar.

wxNO_BORDER This flag does not alter the frame at

all.
wxNO_FULL_REPAINT_ON_RESIZE This flag is used by default and

disables fully repainting the window
when it is resized.

wxRAISED_BORDER This has no effect on frames.
wxSIMPLE_BORDER This has no effect on frames.
wxSTATIC_BORDER This has no effect on frames.
wxSUNKEN_BORDER This has no effect on frames.
wxTAB_TRAVERSAL This flag enables tab traversal.
wxTRANSPARENT_WINDOW This flag stops the window

responding to paint events. It is
usually used for child controls which
need to appear transparent. Used on
frames it can cause all or part of the
frame not to be drawn.

Figure 8.21 – A frame whose border
has not been fully drawn.

wxVSCROLL Causes the window to display a
vertical scrollbar.

Figure 8.22 – Frame displaying a
vertical scrollbar

wxWANTS_CHARS This flag indicates that the window
should generate key events for all
keys, even keys like TAB which are
normally used for navigation.

Height

This property is the overall height of the frame in pixels.

We will set this to 100.

Hidden

This property is currently unused and can be ignored.

Icon

This property allows us to choose an icon that is displayed on the frame. wxDev-
C++ has a small library of icons that can be used for this purpose. To add an icon
you need to click on the button on the right hand side of the property label ‘…’

Figure 8.23 – Altering the icon property

This will open a dialog like the following

Figure 8.24 – The load picture dialog

Click on the load button and in the dialog that opens navigate to the folder where
wxDev-C++ is installed. There should be a folder there named ‘Icons’. Open this
folder.

Figure 8.25 – The file chooser

We will choose the Ufo.ico for this sample.

Figure 8.26 – The ufo icon

Select Ufo.ico
Click [Open]
Then on the next dialog click [OK]

You will notice that the icon displayed on the designer has not changed. However
if we compile the program we will see that the icon has been altered.

Press <F9> to compile and run.

Figure 8.27 – The compiled frame showing our new icon

ID_Name

This property assigns a name to a constant value used to identify the frame. This
name is used by the event handling mechanism. It is often best to just accept the
pre-generated name.

We will leave this value alone.

ID_Value

This property is the value associated with the ID_Name. As mentioned the
ID_Name is a constant that is equal to this value. Again it is often best to leave
this alone.

We will leave this value alone.

Left

This property sets where the left edge of the frame will be placed in relation to the
left hand side of the monitor screen in pixels.

We will set this to 200

Name

This is the name used you used on the frame creation dialog. It is used as the class
name of your class which derives from wxFrame. It is generally better to leave
this alone, especially once you start writing code since the compiler uses this
name to reference all the code related to the frame. In fact if you do try to change
it you will receive the following warning.

Figure 8.28 – Warning that changing the component name might cause problems

We will leave this value alone.

Size to contents

This property is used when a sizer is added to the frame. It causes the following
line of code to be generated.

 GetSizer()->SetSizeHints(this);
This tells the sizer to set the minimal size of the frame to its own minimal size.
Then resize the frame to this size.

Title

This is a string property that corresponds to the caption displayed on the frame.

We will change this to ‘Hello World’

Figure 8.29 – The frame’s caption

Tooltip

This sets a string property that is shown in a little box when the mouse pointer
hovers over the frame.

We will set this to ‘I Love wxWidgets’

Figure 8.30 – The tooltip displayed on the compiled frame

Top

This property sets where the top of the frame will be placed in relation to the top
of the monitor screen in pixels.

We will set this to 200

Width

This property is the overall width of the frame in pixels.

We will set this to 200.

We will now see the completed frame in action

Now press <F9> to compile and run.

Figure 8.31 – The completed frame project

Dialog Project

We are now going to create the wxDialog equivalent to the previous project. To do so

Go to File|New|Project…

You will get the same new project dialog as before.

Select wxWidgets Dialog
Change the project name to DialogProject
Make sure the radio button next to ‘C++ Project’ is selected
Click [OK]

Next you will be prompted for a location to save this project to.

Create a new folder in your ‘Project’ folder
Name the new folder DialogProject
Enter the DialogProject folder
Click [Save]

Next you receive a similar project options dialog as we received for the frame project

Figure 8.32 – The wxDialog project settings dialog

There are few differences to the frame project dialog. The caption has changed to New
wxWidgets Dialog. The automatically generated Class and File names now end in ‘Dlg’
rather than ‘Frm’ and that is about it.

One point we need to cover here is the ‘No Parent’ option. This did nothing when
generating a frame project. However it is necessary for dialog applications. This option
corresponds to the flag wxDIALOG_NO_PARENT. It tells the application that this
dialog does not have a frame as a parent.

Leave all the settings as they are
Click the [Create] button

Figure 8.33 – The new dialog project

Once the new project has been fully created you may notice one particular change to the
wxFrame project. The wxDialog is a light grey colour rather than the wxFrame’s dark
grey colour. This is not a mistake. The designer is mimicking the visual difference
between a frame and a dialog in wxWidgets.

A dialog can be altered in exactly the same manner as a frame. If you look at the list of
options in the Property Inspector you will notice that they are almost exactly the same.

The only differences can be found in the list of flags found under ‘Dialog Style’.

Figure 8.34 – The dialog style flags

Dialog style flags

Flag Name Flag behaviour or style
wxCAPTION Same meaning as for frame
wxCLOSE_BOX Same meaning as for frame
wxDIALOG_EX_CONTEXTHELP The same comments apply here as for

wxFRAME_EX_CONTEXTHELP
wxDIALOG_NO_PARENT This tells the application that this dialog

does not have a parent window.
wxMAXIMIZE_BOX Same meaning as for frame
wxMINIMIZE_BOX Same meaning as for frame
wxNO_3D Same meaning as for frame
wxRESIZE_BORDER Same meaning as for frame
wxSTAY_ON_TOP Same meaning as for frame
wxSYSTEM_MENU Same meaning as for frame
wxTHICK_FRAME Same meaning as for frame

Project Settings

To complete our dialog project we will alter the following settings

Height – change to 100
Icon – change icon to ‘Food.ico’
Title – change to “Dialog Hello World”
ToolTip – change to “wxDev-C++ rocks”
Width – change to 230

Press <F9> to compile and run

Figure 8.35 – The completed dialog project

Multiple Frame Project

In this and the following section we are going to look at how to add more frames and
dialogs to an application and how to use them. To begin create a new ‘wxWidgets’ Frame
project.

Open wxDev-C++
Select File|New|Project…
Select wxWidgets Frame
Change Project Name to “MultipleFrames”
Make sure C++ Project is selected
Click the [OK] button
Create a new folder in your projects
Call the folder “MultipleFrames”
Save the project in this folder
On the next dialog click the [Create] button

We are now ready to begin this project. The intention is to add a new frame and a new
dialog to this project and demonstrate the code needed to display them. First we need
somewhere to put the code to open the second frame and second dialog. To do this we
will add two buttons to the frame and use one to open new frames, the other to open new
dialogs.

On the component palette find the ‘Button’ component

Select the button component and then click on the frame
Repeat this to create a second button

You should now have a frame that looks something like this

Figure 8.36 – The frame with two button controls added

Alter the two buttons as follows

Button titled WxButton1

Change the Left property to the value 3
Change the Top property to the value 3
Change the Width property to the value 100
Change the Label property to the value “Open New &Frame”
Select the Events tab in the Property Inspector

Figure 8.37 – The events tab

In the drop down box next to OnClick select <Add New Function>

Figure 8.38 – The new function option

Return to the form designer by clicking on the tab labelled
MultipleFramesFrm.wxform

Figure 8.39 – The form designer page

Now to create our second button

Button titled WxButton2

Change the Left property to the value 3
Change the Top property to the value 32
Change the Width property to the value 100
Change the Label property to the value “Open New &Dialog”
Select the Events tab in the Property Inspector
In the drop down box next to OnClick select <Add New Function>
Return to the form designer

You should now have something resembling this

Figure 8.40 – The frame

Now to alter the frame

Change the With property to 200

Change the Height property to 100

Finally you end up with this

Figure 8.41 – The completed main application frame

Now we will move on to adding another frame and dialog to this application.

Adding a New Frame

The first thing we need to do is add a new frame

Goto the menu option File|New|New wxFrame
Click the [Yes] button on the following dialog

Figure 8.42 – Add new frame to the existing project dialog

You will recognize the next dialog

Change the Class Name to “SecondaryFrm”
Change the File Name to “SecondaryFrm”
Change the Title to “Secondary Frame”
Click the [Create] button

On the newly generated frame alter the following properties

Change Height to 100
Change Width to 250
Set the wxFRAME_NO_TASKBAR flag to True

Add a new button to the frame and set the button properties to the following

Change Left to 84
Change Top to 23
Change Label to “&Close”

On the buttons Event Tab create a new OnClick event

In the newly generated code add the following line

Destroy();

The Destroy() function comes from the base wxWindow class. Its purpose is to safely
close the window while dealing with any unprocessed events.

Now we need to see how to use this frame in our existing project.

In the source code file “MultipleFramesFrm.cpp” look for the lines

//Do not add custom headers
//wxDev-C++ designer will remove them
////Header Include Start
////Header Include End

This is the section where wxDev-C++ adds any header files it needs to. After the line
////Header Include End

Add the line #include "SecondaryFrm.h"

This adds the declaration of our SecondaryFrm class to the file MultipleFramesFrm.cpp.
This allows us to use the class SecondaryFrm within the code in the file
MultipleFramesFrm.cpp.

Now scroll down through the code in MultipleFramesFrm.cpp until you reach these lines.

/*
 * WxButton1Click
 */
void MultipleFramesFrm::WxButton1Click(wxCommandEve nt&
event)
{
 // insert your code here
}

Now add the following lines within this block of code

void MultipleFramesFrm::WxButton1Click(wxCommandEve nt&
event)
{
 // Create a new frame
 SecondaryFrm * TempFrame = new SecondaryFrm(this);
 TempFrame->Show();

}

The line SecondaryFrm * TempFrame = new SecondaryFrm(this);
 creates an instance of our class SecondaryFrm and assigns it to a temporary pointer of
the type SecondaryFrm . We provide the argument this in the constructor which makes
this instance of the class MultipleFramesFrm class the parent. The benefit of this is that
when you close or destroy a parent class all its children will also be destroyed. So when
you want to exit an application you only want to close the main window not every
window.

The second line TempFrame->Show(); displays the newly created frame.

To see what we have so far

Press <F9> to compile and run the application
Then click on the [Open New Frame] button

The following window should be displayed

Figure 8.43 – Our secondary frame

The appearance of this frame may surprise you. What you will notice is that the button
fills the whole of the frame. This is not an error on wxDev-C++’s part. Rather this is a
feature of wxWidgets. When a frame contains only one control it is enlarged to cover the
whole of the frames client area.

You can experiment with the following features

Try using the close button to close a Secondary Frame.
Try creating several Secondary Frames. (You will need to move them out of the
way)
Try closing the MultipleFrame frame.

You will notice that the new secondary frames are not shown on the taskbar. You can
create several instances of the same class. All instances are closed when you close the
parent frame.

Now we will continue this example by adding a dialog.

Adding a New Dialog

We add a new dialog in the same manner as adding a new frame.

Goto File|New|New wxDialog
Click the [Yes] button
Change the Class Name to “SampleDlg”
Change the File Name to “SampleDlg”
Change the Title to “Sample Dialog”
Uncheck the No Parent option
Check the Stay On Top option
Click the [Create] button

Add two new buttons to the dialog. Then alter the dialog and button properties as follows.

SampleDlg

Change Height to 80
Change Width to 200

WxButton1

Change ID Name to wxID_OK
Change Label to “&OK”
Change Left to 12
Change Top to 14

WxButton2

Change ID Name to wxID_CANCEL
Change Label to “&Cancel”
Change Left to 102
Change Top to 14

Now in the file “MultipleFrames.cpp” look for the include file we added earlier (Line16)
and add these two lines under it.

#include "SampleDlg.h"
#include <wx/msgdlg.h>

The first line allows us to use our new dialog, the second line allows us to use
messageboxes.

Then look for this function

/*
 * WxButton2Click
 */

void MultipleFramesFrm::WxButton2Click(wxCommandEve nt&
event)
{
 // insert your code here
}

Alter this function by adding this code within it.

// insert your code here
SampleDlg TempDlg(this);
if(TempDlg.ShowModal() == wxID_OK)
{
 wxMessageBox("User Pressed OK");
}

Before we enter into any explanations

Press <F9> to compile and run the program.
Try experimenting with the [Open New Dialog] button and dialogs

Figure 8.44 – The compiled Sample Dialog

You should have discovered some interesting results. When a dialog is displayed you can
no longer interact with the “Multiple Frames” frame. This is due to calling it with the
ShowModal() function. This disables all parts of the program except the dialog until
the dialog is closed.

You will also find that if you press the [OK] or [Cancel] buttons the dialog closes. But
wait a minute we didn’t add any code to the buttons to make this happen. What we did do
is change the button’s ID Name. With dialogs there are certain preset ID Name values
that trigger functions built into the dialog wxID_OK and wxID_CANCEL are two of
these.

Finally you will notice that when we close the dialog via the [OK] button a message box
pops up to tell us that we pressed OK. This is the result of these lines.

if(TempDlg.ShowModal() == wxID_OK)
{
 wxMessageBox("User Pressed OK");
}

When the button causes the dialog to close the function ShowModal() returns the ID
Name value of the button. We check for the value wxID_OK being returned and if we
receive it we show a message box since we know only the OK button could return this
value.

There is much more to learn about wxFrame and wxDialog and as ever the wxWidget
help documentation is excellent. It is also worth looking at wxTopLevelWindow and
wxWindow since they both derive from this. Now that we have learnt a little about
frames and dialogs let us begin to create a sample application.

Sample Application Part 1 – The outline

Starting with this chapter we are going to design and build an application. This will be
based on the previous sample program the HTML editor. However this will add many
features that will make it a useful program. A screenshot of the completed program is
shown below.

Figure 8.45 – The completed HTML editor.

In this chapter we will created the frames and dialogs we will need for the program. In
chapter 10 we will look at the various components wxDev-C++ makes available for us to
use. We will end the chapter by adding the various components needed to make this
program look like the about figure. In chapter 11 we will look at how and where to add
code to make it all work. Then in chapter 12 we will consider various points on how
make it a polished professional program.

Before we start you will need to download and install the TangoImages.devpak from the
Bonus download section of the sourceforge project site.

Without anymore ado let us start creating the frames. We are doing to create 1 extra
frame and 4 dialogs. Instead of holding your hand all the way through I am going to tell
you what creation and design time options you will need to set for each frame/dialog. If
you run into trouble creating these the completed frames and dialogs are contained in the
downloadable source code that accompanies the book. They are located in the Chapter 8
folder.

Start a new wxFrame application.
Set the project name to ‘HTMLEdit’
Save the project in a new folder called ‘HTMLEdit’
Set the frame properties according to the following table

Creation Properties

Class Name HTMLEditfrm
File Name HTMLEditFrm
Title Simple HTML Editor
Author Put your name here
Window Style Use Caption, Resize Border, System Menu,

No Parent, Min Button, Max Button, Close
Button

Design time properties

Height 402
Width 553
Icon Use internet-web-browser16x16.png from

the tango icons installed from the
TangoImages devpak into Dev-Cpp/Images

For this application we will have a splash screen. We will use a standard frame for this
purpose.

Create a new wxFrame
Select yes to add to current project
Then set the properties according to the following table

Creation Properties

Class Name Splashfrm
File Name SplashFrm
Title Splash Form
Author Put your name here
Window Style Stay On Top, No Parent

Design time properties

Height 164
Width 220
Frame Style wxSTAY_ON_TOP,

wxDIALOG_NO_PARENT,
wxFRAME_NO_TASKBAR,
wxFRAME_SHAPED

Now we need to create our first dialog. We will be using this as an about box.

Create a new wxDialog
Select yes to add to current project
Then set the properties according to the following table

Creation Properties

Class Name AboutBoxDlg
File Name AboutBoxDlg
Title About Simple HTML
Author Put your name here
Window Style Use Caption, System Menu, No Parent,

Close Button

Design time properties

Height 284
Width 265

The second dialog will be used to create tables in HTML.

Create a new wxDialog
Select yes to add to current project
Then set the properties according to the following table

Creation Properties

Class Name CreateTableDlg
File Name CreateTableDlg
Title Create Table
Author Put your name here
Window Style Use Caption, System Menu, No Parent,

Close Button, Minimize Button

Design time properties

Height 308
Width 236
Icon Use internet-web-browser16x16.png from

the tango icons installed from the
TangoImages devpak into Dev-Cpp/Images

Our next dialog will be used to insert images into the HTML.

Create a new wxDialog
Select yes to add to current project
Then set the properties according to the following table

Creation Properties

Class Name InsertImageDlg
File Name InsertImageDlg
Title Insert Image
Author Put your name here
Window Style Use Caption, System Menu, No Parent,

Close Button, Minimize Button

Design time properties

Height 224
Width 238
Icon Use internet-web-browser16x16.png from

the tango icons installed from the
TangoImages devpak into Dev-Cpp/Images

Our final dialog will be used for adding hyperlinks into the HTML document.

Create a new wxDialog
Select yes to add to current project
Then set the properties according to the following table

Creation Properties

Class Name InsertHyperlinkDlg
File Name InsertHyperlinkDlg
Title Insert Hyperlink
Author Put your name here
Window Style Use Caption, System Menu, No Parent,

Close Button, Minimize Button

Design time properties

Height 154
Width 373
Icon Use applications-internet16x16.png from

the tango icons installed from the
TangoImages devpak into Dev-Cpp/Images

That concludes this chapter if you wish you can press <F9> to compile and run the
program, but be warned it will look very boring at this stage. Make sure you save the
project before closing it. In the next chapter we will start adding controls. By the end of
the main chapter you will still only see the main frame, but it will be a whole lot more
exciting.

Chapter 9 – The Component Palette

Introduction

The component palette is divided into several sections Sizers, Controls, Window,
Toolbar, Menu, Dialogs, System, MMedia, Unofficial and All. ‘All’ unsurprisingly
contains all the available controls. The other options provide a means of making it easier
to locate specific controls.

In this chapter we will consider each of the palettes in turn and discuss the controls they
contain. The chapter will end by adding to the sample application we began building in
the last chapter.

Adding Components to a Frame or Dialog

The components are displayed in the palette on the right hand side of the IDE.

Figure 9.1 – The component palette

To place a component on a frame you first need to select it from the palette by clicking
on it. It will be highlighted blue to show it is active.

Figure 9.2 – A selected component

Next click on the designer form to drop the component.

Figure 9.3 – The selected component added to the form

Some components have the ability to contain other components. The panel is an example
of this. To add a component into a container component you first need to select the
container. Do this by clicking on it, it will be highlighted with 8 small rectangles. Then
select the component you wish to add from the palette. Now click on the container to
place this component inside.

Figure 9.4 – A button placed within a panel

What if you select a component from the palette by mistake and want to change your
mind? You can either select a different component or click on the selector option which
appears at the top of every palette. This will deselect the component.

Figure 9.5 – The selector option

Altering Components

Just like frames there are two ways to alter components from within wxDev-C++, one is
by direct manipulation; the other is by changing properties.

Direct Manipulation Of Components

To alter components via direct manipulation you need to select them. This is achieved by
clicking over the component with the mouse. When a component is selected it shows 8
dark resizing squares on its edges.

Figure 9.6 – Figure showing WxMemo1 as selected, WxMemo2 as unselected

If you hover over these resizing squares the mouse pointer will change once it does so
you can press and hold the left mouse button. Moving the mouse will now resize the
component. While resizing the component in this manner the resizing rectangles will be
replaced with a red border and a small tooltip will appear to tell you the current width and
height of the control.

Figure 9.7 – Red resizing border and tooltip showing current width and height

It is possible to select more than one component at a time to do this hold down the shift
key while clicking on each component you want to select. When more than one
component is selected the 8 resizing rectangles are replaced with 4 light grey selection
rectangles. These indicate that the selected controls can not be resized but can be moved.
All the selected controls will be moved by the same amount.

Figure 9.8 – Multiple selected components

To move a component press and hold the left mouse button while the pointer is over the
component itself. You can then drag the component to a new position.

Alignment of controls can be tricky. Interfaces tend to look messy if the controls are all
misaligned.

Figure 9.9 – Misaligned controls resulting in a messy interface

wxDev-C++ designer has a number of options to help you with aligning controls. These
are based around the grid of little black dots you can see on the background of the design
form. To make the most of this grid you need to bring up the context menu by right
clicking on the frame designer.

The Designer Form Context Menu

Figure 9.10 – The design form context menu

The options we will consider here are Align and View Designer Options. The first of
these is the Align option. The hovering over the menu item produces a sub menu like the
following.

Figure 9.11 – Align menu

If you select the option To Grid all selected components will be moved to the nearest
horizontal and vertical gridline. This has limited use. If you have several components
selected then the other two options Horizontal and Vertical are of more use.

Figure 9.12 – The horizontal align menu

Choosing the option To Left will align all controls with the leftmost of the selected
controls. The To Right will do the opposite and To Center will align all controls to the
same center point.

The Vertical menu works in the same manner and has the options To Top, To Center and
To Bottom.

The following picture is the result of aligning each pair of buttons and edit boxes with
Align|Vertical|To Top. Then aligning all the buttons with Align|Horizontal|To Right and
all edit boxes with Align|Horizontal|To Left.

Figure 9.13 – A slightly neater interface after using the align options.

To customise the design grid choose the menu option View Designer Options. The
following dialog will appear.

Figure 9.14 – The form designer options

The options available via this dialog allow you to alter the grid spacing, turn the grid on
and off and enable snapping to the grid. The snapping option can be very useful and the
controls will automatically jump to the nearest grid points and make it easier to align
controls.

The Other Context Menu Options

The first four options are pretty obvious they cut, copy or delete the selected components,
paste previously cut or copied components.

The Change Creation Order first brings up a warning dialog.

Figure 9.15 – Save before altering creation order warning

If you select yes then the following dialog is displayed

Figure 9.16 – Creation order dialog

This dialog allows you to alter the order your controls are created. If you check the
CreateGUIControls() function in the corresponding .cpp file you will see that the controls
are created in the same order as you arrange them in this dialog. This allows you to set
the order in which the controls are traversed used the TAB key at runtime.

The option View Control IDs displays a dialog box which lists all the components on the
form along with their ID number, ID name and Control Name.

Figure 9.17 – List of controls and IDs

The next option is Select Parent, some components can only be contained by other
controls, others such as wxPanel can act as a container. Occasionally you may wish to

change the parent or container object for a certain component. If you right click on it and
choose Select Parent then you will get a list of possible parents.

Figure 9.18 – Option of parents to choose from.

Component Properties

As discussed the other method of altering the components is by altering their properties.
Some of these changes will show up in the designer, others will only be noticed once the
application is compiled.

Before discussing the various components we will first look at a few properties that they
all have in common. This means that we can concentrate on the unique properties of each
component.

Common Properties

Alignment

This is a sizer related property which affects how the control will react to the sizer
that contains it. At present this is designed as a single choice list. This will be
covered under sizers.

Background color

This property alters the background colour of the control.

Figure 9.19 – Button with the background colour set to green

Base class

This is not a property as such. This setting allows you to use a different class
name for the component allowing you to use your own wxWidgets derived

components. This is covered in more depth in Part 3. Don’t alter this property
unless you know what you are doing.

Border

This is a sizer related property which affects how much padding the control has
between itself and the walls of the sizer that contains it. This will be covered
under sizers.

Borders

This is a sizer related property which works with the Border option. This property
allows you to specify which sides of the control will receive the padding. This
will be covered under sizers.

Comments

This is a nice feature. Any text entered here is transferred into the source code as a
comment that appears above the control at creation time. This can help you later
when working on a big project to remember the purpose of this control.

Figure 9.20 – The code created by altering the comment property of a wxButton

Enabled

This property affects whether the control will be enabled or not at runtime. A
disabled control is greyed out and doesn’t respond to user input.

Figure 9.21 – A wxButton with the enabled property set to false.

Font

This option sets the font that will be used by this control and controls that are
children of this control.

Figure 9.22 – A wxButton after the font property has been altered

Foreground Colour

This option sets the foreground colour of the control, this generally affects the
font colouring.

Figure 9.23 – A wxButton after the foreground property has been altered to red

General Style

The general style property contains the styles that apply to all wxWindows
controls.

To access them click on the little cross ‘+’ besides the property ‘General Style’ in
the Property Inspector. The complete list will drop down as shown below.

Figure 9.24 – The full list of General Style properties

All these styles are Boolean values. If the property is set to true the flag will be
added to the list of flags passed to the frame when it is created at runtime. We will
now consider each style in turn.

Flag Name Flag behaviour or style
wxCLIP_CHILDREN This flag removes flicker that is

caused when child controls are
painted.

wxDOUBLE_BORDER Supposedly displays a double border
on Windows and Mac platforms.

Figure 9.25 – wxPanel with double
border set

wxHSCROLL Causes the component to display a
horizontal scrollbar.

Figure 9.26 – wxPanel displaying a
horizontal scrollbar.

wxNO_BORDER Causes the component to be drawn
without a border.

Figure 9.27 – wxPanel drawn without
a border

wxNO_FULL_REPAINT_ON_RESIZE This flag is used by default and
disables fully repainting the
component when it is resized.

wxRAISED_BORDER Displays a raised border around the
component.

Figure 9.28 – wxPanel drawn with a
raised border

wxSIMPLE_BORDER This displays a single line border
around the component.

Figure 9.29 – wxPanel drawn with a
simple border

wxSTATIC_BORDER This displays a single line suitable for
static components.

Figure 9.30 – wxPanel drawn with a
static border

wxSUNKEN_BORDER Displays a sunken frame around the
component.

Figure 9.31 – wxStaticBitmap with
sunken border

wxTAB_TRAVERSAL This flag enables tab traversal on this
component.

wxTRANSPARENT_WINDOW This flag stops the component
responding to paint events. It is
usually used for child controls which

need to appear transparent.
wxVSCROLL Causes the window to display a

vertical scrollbar.

Figure 9.32 – Frame displaying a
vertical scrollbar

wxWANTS_CHARS This flag indicates that the window
should generate key events for all
keys, even keys like TAB which are
normally used for navigation.

Height

This property sets to height of the control in pixels.

Figure 9.33 – A wxButton with the height property set to 62

Help Text

?
Hidden

This property affects whether the control will be displayed at runtime or not.

Figure 9.34 – A wxButton with the hidden property set to true

ID_Name

This property assigns a name to a constant value used to identify the frame. This
name is used by the event handling mechanism. It is often best to just accept the
pre-generated name. The exception is when you are using controls to carry out
predefined actions. These actions are listed in the drop down box.

Figure 9.35 – The list of predefined ID_Names

ID_Value

This property is the value associated with the ID_Name. As mentioned the
ID_Name is a constant that is equal to this value. Again it is often best to leave
this alone.

Left

This sets the left position of the control in pixels in relation to its parent.

Name

This is the name you will use to refer to this instance of the component in your
code. It is good to change this to a memorable and useful name, (See naming
conventions in chapter 11), before you start coding. Once you have attached code
to this control it makes it harder to alter.

Stretch Factor

This is a sizer related property that affects how much space a control is allowed to
take up. This will be covered under sizers.

Tooltip

This property sets the text that will popup when the mouse hovers over the control

Figure 9.36 – The tooltip attached to a wxButton

Top

This sets the top position of the control in pixels in relation to its parent.

Width

This property sets the width of the control in pixels

Figure 9.37 – A wxButton with the width property set to 20

In addition to the above properties there are three properties that apply mainly to controls
used to display values or accept values from the user. Two of these RHS and LHS
Variables are strictly wxDev-C++ related, the third Validator Code is wxWidgets related.
The purpose of these appears below.

LHS Variable

RHS Variable

Validator Code

wxWidgets uses validators for three different reasons. These are to fill or retrieve
the values from controls, to intercept certain events and finally to provide filtering
on the control. There are two predefined validators. wxGenericValidator and
wxTextValidator. In addition to these you can create and use your own validators.

By default wxDev-C++ will use ‘wxDefaultValidator’ which is a NULL value
meaning that no validation will be carried out on this control. To alter the
validator used by wxDev-C++ you need to click on the button […] which appears
in the box next to the property ‘Validator’

Figure 9.38 – The Validator edit button

This will bring up the Validator Editor

Figure 9.39 – The Validator Editor

This has two drop down boxes, Validator Type and Filter Style. The Validator
Type allows the user to choose from wxTextValidator or wxGenericValidator.

Figure 9.40 – The Validator Type selector

If you choose wxGenericValidator then the Filter Style will be disabled, since the
Generic Validator only supports data transfer, not validation or filtering. For
wxTextValidator it is possible to choose a Filter Style.

Figure 9.41 – The Filter Style selector

The filter styles are as follows

Filter Name Purpose
wxFILTER_NONE Provides no filtering
wxFILTER_ASCII Only allows ASCII characters to be entered
wxFILTER_ALPHANUMERIC Only allows letters and numbers to be entered
wxFILTER_NUMERIC Only allows numbers to be entered
wxFILTER_INCLUDE_LIST Allows the user to specify a list of acceptable

strings
wxFILTER_EXCLUDE_LIST Allows the user to specify a list of non

acceptable strings
wxFILTER_INCLUDE_CHAR_LIST Allows the user to specify a list of acceptable

characters
wxFILTER_EXCLUDE_CHAR_LIST Allows the user to specify a list of non

acceptable characters

For the last four filter styles you will need to supply and attach the list of
strings/characters yourself.

The final option is Validator Variable Name. This value is the name of a
wxString. A pointer to this string will be used to supply the control with values
and in turn will set the string to the controls value.

The last box Validator Command shows the code that is created by setting these
options and is not something you would need to alter yourself.

The Components

Sizers
The components that raise the most questions are the sizers. They have no counterpart in
traditional windows programming. However you will find similar components in Java
and some other GUI libraries.

Sizers always have a parent control and they are designed to get larger and smaller when
their parent alters size. At the same time they contain other controls or sizers and query
these for their minimal size when they resize. Sizers themselves are non-visible controls.

But what is the benefit of this somewhat awkward method of laying out forms and
dialogs? There are many benefits. The first is that on different platforms controls are
different sizes. For example GTK uses a larger font than Windows by default. There for a
button on Windows would be too small on GTK. Therefore part of the text might be lost,
or the button might be bigger which will throw out your carefully arranged dialog. A
second benefit is when the user resizes the frame. What happens now? If you have put all
the controls exactly where you want them, they will stay there and if the frame is made
smaller it could cover them. If it is enlarged there could be large blank areas on the frame.
Sizers ensure that the controls react to the frame resizing in predetermined ways.

There are four types of sizer. These are the wxBoxSizer, wxStaticBoxSizer, wxGridSizer
and wxFlexGridSizer. Each of these has a particular purpose and we will discuss these
after we consider the properties that all of these have in common.

Common Sizer Properties

 Alignment

This property affects how the control is displayed within the sizer. It can have any
combination of the following 8 values (although only a few combinations make
sense e.g. wxALIGN_TOP and wxALIGN_LEFT).

Flag name Purpose
wxALIGN_TOP The control will be aligned to the top edge of the

sizer
wxALIGN_LEFT The control will be aligned to the left edge of the

sizer
wxALIGN_RIGHT The control will be aligned to the right edge of

the sizer
wxALIGN_BOTTOM The control will be aligned to the bottom edge

of the sizer
wxCENTER The control will be centred horizontally and

vertically within the sizer
wxCENTER_HORIZONTAL The control will be centred horizontally within

the sizer

wxCENTER_VERTICAL The control will be centred vertically within the
sizer

wxEXPAND The control will expand to take up all the
available space.

To see how these flags work we will create a new project.

Create a new frame project
Call it SizerAlignment
Save it in a new folder called SizerAlignment
Add a resizeable border and maximize button to the default settings

 You should now have a default frame.

Click on the Box Sizer component then click on the Frame
Change the sizer Alignment property to wxEXPAND
Change the sizer Orientation property to wxVertical
Change the sizer Stretch Factor property to 1

We now need to add another box sizer to this one.

Select the box sizer you have already added
Now select another box sizer from the component palette
Click on the existing box sizer to place it
Alter the properties to be the same as the existing sizer

Finally we want a third box sizer

Add the third box sizer the same way as the last one
Set the properties to the same values except the Oritentation set this to
wxHorizontal

Now we need to add some controls for the sizer to work with

Add 4 button controls to the second sizer
Add 4 button controls to the third sizer
Resize the frame so you can see all the buttons
Set the Alignment property for WxButton1 to wxALIGN_LEFT
Set the Alignment property for WxButton2 to wxALIGN_RIGHT
Set the Alignment property for WxButton3 to
wxALIGN_CENTER_HORIZONTAL
Set the Alignment property for WxButton4 to wxEXPAND
Set the Alignment property for WxButton5 to wxALIGN_TOP
Set the Alignment property for WxButton6 to
wxALIGN_CENTER_VERTICAL
Set the Alignment property for WxButton7 to wxALIGN_BOTTOM

Set the Alignment property for WxButton8 to wxCENTER

You should now have something that resembles this.

Figure 9.42 – The SizerAlignment project in design view

Press <F9> to compile and run the project

The result of running the project should be something approaching this

Figure 9.43 – The SizerAlignment project at runtime

The first thing you will realise is that the result looks nothing like the project at
design time. This is one of the areas that wxDev-C++ is especially weak in. The
sizers look nothing like the end result. The sizers are coloured in design view, but
transparent at runtime. They don’t resize the components at design time either.

But enough of picking on wxDev-C++. Play around with the sample. Try resizing
the frame, you will notice that the buttons move according to the rules the flags
set up. You will also notice that you cannot make the frame smaller than a certain
size. As we go on hopefully you will realise the ease with which sizers can help
layout your frames and dialogs.

Border

This is a sizer related property which affects how much padding the child of the
sizer has between the walls of the sizer that contains it. This can be seen
especially clearly around the expanded button in the previous example.

Figure 9.44 – Expanded button showing padding.

If you look under the properties for the button you will see that it has a border
padding of 5. This is apparent by the spacing between it and the walls of the
frame. You may think that the spacing looks like more than 5 pixels each side and
you would be correct. For the sizers also have a border of 5 pixels.

Borders

This property is closely related to the Border property. The Border property
specifies the thickness of the border. The Borders property is a set of flags which
specify which side of the control receive this border. More than one flag can be
set at a time, for example wxTop and wxBOTTOM to pad the top and bottom but
not the sides.

Flag name Purpose
wxALL All sides receive padding
wxBOTTOM The bottom side of the control receives padding
wxLEFT The left side of the control receives padding
wxRIGHT The right side of the control receives padding
wxTOP The top of the control receives padding
I leave it to you to play around with the previous sample to see the effect of
border padding.

Stretch Factor

This property only affects controls in wxBoxSizers. You may have noticed that
controls in the sample application were aligned in their parent sizers orientation.
Thus Button4 aligned horizontally. The Stretch Factor alters how they should
react to enlargement in the other dimension. The Stretch Factor is a proportional
setting. If it is zero the controls will be unaffected in the other dimension. If it is
above zero then the number is taken as a proportion. For example if you have two
buttons in a sizer with a stretch factor of 1 then they will expand to take half the
free space each.

To test this change the previous example so that buttons 3 and 5 have a stretch
factor of 1 and button 4 has a stretch factor of 2. Now play with the compiled
frame. You should see that Button5 stretches to fill the cell it is in. Button4
stretches twice as much as Button3.

Figure 9.45 – The effect of using Stretch Factors

The Sizers

As previously mentioned there are 4 sizers and we will examine each one and see how
they differ.

wxBoxSizer

We have pretty much covered the abilities of the wxBoxSizer in the last section. Box
sizers are designed to layout their children in one dimension, either horizontally or
vertically. For more complex layout they can be placed inside one another.

Figure 9.46 – A horizontal wxBoxSizer with differently aligned children

wxStaticBoxSizer

The wxStaticBoxSizer is the same as the box sizer with the exception that it draws a
static box around the child controls. It has one additional property Caption. You will
notice that the form designer doesn’t handle the drawing of the static box sizer very well.

Caption

The caption property sets a caption in the top of the static box to explain its
purpose.

Figure 9.47 – A wxStaticBoxSizer with caption and differently aligned children

wxGridSizer

The grid sizers are two dimensional containers. The wxGridSizer gives all controls the
same size container, the size of which is set by the minimal size of the largest control. It
is suited for when you have many controls that you what laid out in a regular fashion.
Since its purpose differs from box sizers it has extra properties.

Column Spacing

This sets the gap between the columns in the sizers

Columns

This sets the number of columns the grid contains

Height

Ignore this property, sizers do not have a height property
Left

Ignore this property, sizers do not have a leftt property

Row Spacing

This sets the gap between the rows in the sizers

Rows

This sets the number of rows the grid contains

Width

Ignore this property, sizers do not have a width property

Top

Ignore this property, sizers do not have a top property

Figure 9.48 – The wxGridSizer with left aligned controls

wxFlexGridSizer

The wxFlexGridSizer is like the grid sizer. However the flex grid sizer does not specify
that each cell must be the same size. Instead each cell on one row must be the same size
and each cell in a column must be the same size. The flex grid sizer has the same
properties as the grid sizer.

Figure 9.49 – The wxFlexGridSizer with different sized cells

This concludes our discussion on sizers. There is more on the topic which can be found in
the wxWidgets help manual under sizers and the section sizers overview. There is also a
handy guide available at http://neume.sourceforge.net/sizerdemo/ .We will be using sizers
in our demonstration application at the end of this chapter.

Controls

The Controls palette in wxDev-C++ contains a ragbag assortment of common controls.
For convenience I am going to break them down into 4 groups. Text controls, Buttons,
Choices and the rest. I will start with the text controls.

Text Controls

I have grouped all the controls that are used for displaying text together in this section.

Static Text

A wxStaticText control is designed when you want to display one or more lines of text.

Figure 9.50 – A wxStaticText control

The Static Text control has these unique properties.

Label

This is the text that appears on the text control.

Label Style

This control uses the following flags to define its style

Flag Name Purpose
wxALIGN_CENTER This aligns the text to the center of the control
wxALIGN_LEFT This aligns the text to the left of the control
wxALIGN_RIGHT This aligns the text to the right of the control
wxST_NO_AUTORESIZE This stops the control resizing its to fit its contents

Edit

The Edit control is a wxTextCtrl with the Multiline flag set to false. It allows users to
display or edit a single line of text.

Figure 9.51 – A wxTextCtrl with multiline style set to false

The Edit control has these unique properties.

Edit Style

This control uses the following flags to define its style

Flag Name Purpose
wxTE_AUTO_URL Highlights URLs and sends URL events when the

mouse is over them.
wxTE_BESTWRAP Causes the text in the control to wrap at word or

other character boundaries.
wxTE_CAPITALIZE Causes the first letter to be capitalised.
wxTE_CENTRE Text in this control will be centered.
wxTE_CHARWRAP Wrap lines that are too long to be shown entirely.
wxTE_DONTWRAP Don’t wrap at all, show a horizontal scrollbar

instead.
wxTE_LEFT Text in this control will be left justified.
wxTE_MULTILINE This flag allows the controls to show multiple lines

of text.
wxTE_NOHIDESEL This flag causes the selected text to be displayed

even when the control loses focus.
wxTE_PASSWORD If this flag is set all text will show up as asterisks

‘*’.
wxTE_PROCESS_ENTER Setting this flag means that an Enter event will be

triggered when the Enter key is pressed, otherwise
the Enter key event will be used internally.

wxTE_PROCESS_TAB Normally the TAB key is used to change the focus
from the current control to another control. This
flag alters that behaviour and sends a TAB event to
this control.

wxTE_READONLY This flag prevents users from editing the contents
of this control.

wxTE_RICH Uses the Rich Edit control under windows.
wxTE_RICH2 Uses the Rich Edit control version 2 or 3 under

windows.
wxTE_RIGHT Text in this control will be right justified.

MaxLength

Sets the maximum number of characters that can be entered into this control. Causes an
event to be triggered if the user tries to enter more than this. It adds a line like the
following in the CreateGUIControls() function.

 WxMemo3->SetMaxLength(20);

Text

This allows you to set a line of text that will appear in the control, by default this
is the controls name.

Memo

The Memo control is exactly the same control as the Edit control. The only difference is
that the MultiLine property is set to true.

Figure 9.52 – A wxTextCtrl with multiline style set to true

The Edit control has these unique properties.

Edit Style

These are the same options as for the Edit Control, see Edit for the meanings.

Load From File

This property brings up a file selection dialog to choose the file to display in the
memo. Adds a line like the following in the CreateGUIControls() function.

 WxMemo3->LoadFile("C:/Dev-Cpp/copying.txt");

Care needs to be taken since this adds an absolute path, so the file needs to be in
the same place on the users system.

Maximum Length

This has the same meaning as the Edit Controls MaxLength property, see Edit for
the meaning.

Strings

This option brings up a dialog that allows you to enter the text that will appear in
the control at runtime. However if you have already chosen to load from file any
alterations you make here will be overridden.

Figure 9.53 – The String Editor

The String Editor is used for a number of controls. The gotcha with the memo
control is that if you enter several lines of text then compile the program you will
see all the text jumbled together. The reason for this is that the Editor doesn’t add
the new lines into the resulting string. You need to put the ‘\n’ for yourself.

Figure 9.54 – The String Editor showing manual entry of line breaks

Rich Text Ctrl

The wxRichTextCtrl is a rich text control (meaning that it can show different styles of
text and images at the same time). It is built using wxWidgets and not relying on the
underlying native controls.

Figure 9.55 – The wxRichTextCtrl

The Rich Text control has these unique properties.

Load From File

This property is the same as the one for the wxTextCtrl. See Memo for more
details.

Maximum Length

This property is the same as the one for wxTextCtrl. See Edit for more details.

RichText Style

This control uses the following flags to define its style

Flag Name Purpose
wxRE_MULTILINE Setting this flag allows you to use more than one line of

text.
wxRE_READONLY Setting this flag prevents the user from editing the

contents.

Strings

This property has the same meaning as for the Memo control. See Memo for more
details.

Styled Text Ctrl

The wxStyledTextCtrl is a wrapper around the Scintilla control. It provides many
powerful features for writing text editors, such as line numbering, source code
colourization, and much more. Support for this control is at present very limited in
wxDev-C++.

Figure 9.56 – The wxStyledTextCtrl

The Styled Text control has these unique properties.

Load From File

This property has the same meaning as the Memo control. See Memo for more
details.

Strings

This property has the same meaning as the Memo control. See Memo for more
details.

Hyper Link Ctrl

The wxHyperlinkCtrl is similar to the static text control, except it displays a hyperlink.
You are able to specify the URL it points to, the text it contains and how it reacts to the
mouse.

Figure 9.57 – The wxHyperlinkCtrl

Hover Color

This option sets the colour of the text when the mouse hovers over it.

HyperLink Style

This control uses the following flags to define its style

Flag Name Purpose
wxHL_CONTEXTMENU Pops up a context menu that allows

the user to copy the url (not the label)
to the clipboard

Label

This option sets the text that will be shown on the control.

Normal Color

This sets the colour of the controls text before it has been clicked and while the
mouse is not interacting with it.

Visited Color

This sets the colour of the controls text after it has been clicked upon.

Wx_URL

This property is a string that sets the URL that the control points to.

Buttons

Button

The wxButton is one of the basic elements of a GUI. It usually displays text describing its
purpose.

Figure 9.58 – The Button control

Button Styles

This control uses the following flags to define its style

Flag Name Purpose
wxBU_BOTTOM Aligns the label to the bottom of the button
wxBU_EXACTFIT Creates a button that is as small as possible
wxBU_LEFT Aligns the label to the left of the button
wxBU_RIGHT Aligns the label to the right of the button
wxBU_TOP Aligns the label to the top of the button

Default

Sets this button to be the one with the focus which means it will be pressed when
the Enter key is pressed.

Label

This property sets the text that will be displayed on the button.

Bitmap Button

A bitmap button is a button that displays a bitmap that usually shows its purpose.

Figure 9.59 – The wxBitmapButton control

Bitmap

This option sets the bitmap that is displayed on the button. This bitmap is used for
all the button states.

Button Styles

This control uses the following flags to define its style

Flag Name Purpose

wxBU_AUTODRAW If this flag is set the button will be drawn as flat style
wxBU_BOTTOM Aligns the bitmap label to the bottom of the button
wxBU_LEFT Aligns the bitmap label to the left of the button
wxBU_RIGHT Aligns the bitmap label to the right of the button
wxBU_TOP Aligns the bitmap label to the top of the button

Default

This property is the same as the Default value for the Button. See Button for more
details.

Toggle Button

The wxToggleButton is a button that stays depressed once clicked.

Figure 9.60 – The wxToggleButton in unpressed and pressed state

The Toggle Button has no extra properties.

Spin Button

The wxSpinButton has two arrow buttons used to increment or decrement an integer
value.

Figure 9.61 – The wxSpinButton control

Max

This is an integer value that sets the maximum value this control can take.

Min

This is an integer value that sets the minimum value this control can take.

Orientation

 This control uses the following flags to control its orientation

Flag Name Purpose
wxSP_HORIZONTAL Sets the controls orientation to horizontal, Arrows point

left and right
wxSP_VERTICAL Sets the controls orientation to horizontal, Arrows point

up and down

Spin Button Style

This control uses the following flags to define its style

Flag Name Purpose
wxSP_ARROW_KEYS User can use the arrow keys to alter the values
wxSP_WRAP The controls value will wrap if it exceeds its maximum

or minimum values

Choices

CheckBox

The wxCheckBox control is a control that can display an on or off state. Optionally it can
have a third or undefined state.

Figure 9.62 – The wxCheckBox control

Caption

This property is a string which defiens the controls label

Checkbox Styles

This control uses the following flags to define its style

Flag Name Purpose
wxALIGN_RIGHT Puts the text label on the left and the check box on

the right
wxCHK_2STATE Creates a 2 state check box
wxCHK_3STATE Creates a 3 state check box
wxCHK_ALLOW_3RD_
STATE_FOR_USER

Allows the user to set the check box to the third
state, otherwise it must be done within code

Checked

This is property has a true or false value which defines if the control is created
already checked.

Choice

The wxChoice control presents the user with a drop down box from which they can select
a string.

Figure 9.63 – The wxChoice control

Index

This is the index of the currently selected item. The numbering starts with the first
item numbered 0.

Items

This property brings up the string editor to allow you to set the string items
contained by this control. Unlike the memo control you don’t need to add new
line markers to the end of the strings. Each line in the string editor will become a
separate item in the Choice Box.

Radio Button

A wxRadioButton is usually a round control that occurs in groups. Only one button of the
group can be selected at a time. If a new button is selected the previously selected button
is deselected.

The first radio button in a group is marked with the wxRB_GROUP flag. Thereafter
every radio button belongs to the same group until another radio button is placed marked
with the wxRB_GROUP flag.

Figure 9.64 – The wxRadioButton control

Caption

This property is the same as the Caption property in CheckBox. See CheckBox for
more details.

Checked

This property is the same as the Checked property in CheckBox. See CheckBox
for more details.

Radio Button Style

This control uses the following flags to define its style

Flag Name Purpose
wxRB_GROUP Marks this button as part of a group
wxRB_SINGLE Marks this button as not being part of a group

Combo Box

The wxComboBox is a more powerful version of the wxChoice. It combines a text
control with a list control and allows users to select one item out of a list. All items in the
combo box are numbered starting from zero.

Figure 9.65 – The wxComboBox control

Combobox Style

This control uses the following flags to define its style

Flag Name Purpose
wxCB_DROPDOWN The list of choices are displayed in a drop down box
wxCB_READONLY Only the choices in the drop down list can be

selected
wxCB_SIMPLE The list of choices is permanently displayed
wxCB_SORT The choices are sorted into alphabetical order

Edit Style

The combo box control comes with a list of edit styles. The only one that has any
effect is wxTE_PROCESS_ENTER and this means the same as the flag with the
same name in the edit control. See Edit for more details.

Items

This property has the same meaning as the one in the choice control. See Choice
for more details.

Text

This property is a string value that sets the text displayed in the combo box. If the
flag wxCB_READONLY is set to true, then this string must appear in the Items
list otherwise it will be ignored.

List Box

A wxListBox is used in a similar way to a wxChoice or wxCombo, in that it allows a user
to choose from a list of items. The main difference is that the contents are always
displayed. It is also possible to design it so that the user can select multiple items.

Figure 9.66 – The wxListBox control

Listbox Style

This control uses the following flags to define its style

Flag Name Purpose
wxLB_ALWAYS_SB Always show a vertical scroll bar
wxLB_HSCROLL Create hortizontal scroll bar when the contents are too

wide
wxLB_NEEDED_SB Only show a vertical scroll bar when all the contents

can not be seen
wxLB_SORT The items are sorted into alphabetical order

Selection Mode

This control uses the following flags to define its selection style

Flag Name Purpose
wxLB_SINGLE Creates a single selection list
wxLB_MULTIPLE Creates a multiple selection list, where the user can

toggle contents between selection states
wxLB_EXTENDED Creates the extended multiple selection list, user can

select multiple items while holding down the Shift key

Strings

This has the same meaning as for the Choice control. See Choice for more details.

List Ctrl

The wxListCtrl is a powerful control which allows you to display lists in several different
manners. This can be a multi column list, a report view, an icon view or a small icon
view. List Controls are used in applications such a Windows Explorer which allow the
user to view the files within a folder in different ways.

Figure 9.67 – The wxListCtrl control

Columns

The Columns property opens a dialog to enable you to add columns to the ListCtrl.

Figure 9.68 – The ListControl Column Editor

To use this editor you need to use the Column Properties section.

Alignment

This gives you the options to set the justification for the column.

Alignment Purpose
Left Justify Sets the text alignment to the left
Center Sets the text alignment to the center
Right Justify Sets the text alignment to the right

Caption

This string property sets the caption for new column.

Width

This integer property sets the width of the column

Adding a New Column

Once you have set the properties for the new column, you click the [Add] button to add
the column to the control. This will be shown in the preview.

Deleting an Existing Column

To delete a column you have previously created select the column by its caption in the
box under the caption Columns.

Rearranging an Existing Column

To re-order previously created columns select the column you wish to move by clicking
on the corresponding caption in the box under the caption Columns.

At present there is no way to alter the properties of an existing column, instead you need
to delete and recreate it.

Items

At present the Items property is unused.

Listview Style

This control uses the following flags to define its style

Flag Name Purpose
wxLC_ALIGN_LEFT Icons align to the left
wxLC_ALIGN_TOP Icons align to the top
wxLC_AUTOARRANGE Icons arrange themselves
wxLC_EDIT_LABELS Labels are user editable
wxLC_HRULES Draws light horizontal lines between rows when

wxLC_REPORT is set
wxLC_NO_HEADER If the flag wxLC_REPORT is set, then no

column headers will be shown
wxLC_NO_SORT_HEADER Prevents the header acting as a button
wxLC_SINGLE_SEL Only single items can be selected, default is

multiple selection
wxLC_SORT_ASCENDING Sort in ascending order (needs a comparison

callback setting using the SortItems() method
wxLC_SORT_DESCENDING Sort in descending order (needs a comparison

callback setting using the SortItems() method
wxLC_VRULES Draws light vertical lines between rows when

wxLC_REPORT is set

Listview View

This control uses the following flags to define its view style

Flag Name Purpose
wxLC_ICON Items are viewed as large icons with optional labels
wxLC_SMALL_ICON Items are viewed as small icons with optional labels
wxLC_LIST Multi-column view with optional icons
wxLC_REPORT Single or multi-column view with optional headers for

the columns
wxLC_VIRTUAL Can only be used with wxLC_REPORT the

application provides the text on demand, used for huge
amounts of data

Radio Box

The wxRadioBox is designed to display a group of mutally exclusive options surrounded
with a static border and an optional caption.

Figure 9.69 – The wxRadioBox control

Caption

This string property defines the label that appears in the static border.

Items

This property has the same meaning as for the Choice control. See Choice for
more details.

Major Dimension

Depending on the flag setting in Radiobox Style this setting specifies the
maximum number of rows or columns in a 2 dimensional array. See Radiobox
Style for more details.

Radiobox Style

This control uses the following mutually exclusive flags to define its style

Flag Name Purpose
wxRA_SPECIFY_COLS If this setting is chosen then the Major Dimension

property will specify the maximum number of
columns

wxRA_SPECIFY_ROWS If this setting is chosen then the Major Dimension
property will specify the maximum number of rows

Selected Button

This property calls the wxRadioBox function SetSelection to set the currently
selected button.

Date Picker Ctrl
The wxDatePickerCtrl is a simple control that allows the user to set a date. This can be
achieved by direct editing or via a popup window depending on whichflags are set at
creation time.

Figure 9.70 – The wxDatePickerCtrl control

Date

This allows you to set the date and time that will be displayed by default.

Picker Style

This control uses the following flags to define its style

Flag Name Purpose
wxDP_ALLOWNONE Allows the user to enter any date, even an invalid

one
wxDP_DEFAULT Creates an edit style to suit the platform (Spin

buttons under Windows, drop down on other
platforms)

wxDP_DROPDOWN Creates a month calendar drop down
wxDP_SHOWCENTURY Forces the century to be shown, otherwise the date

is displayed in a format that suits the system
wxDP_SPIN Don’t show drop down calendar, edit using a spin

button instead

Check List Box

The wxCheckListBox works just like a standard list box with the difference that the
contents can be checked and unchecked.

Figure 9.71 – The wxCheckListBox control

Items

This has the same meaning as for the Choice control. See Choice for more details.

Listbox Style

This control uses the following flags to define its style

Flag Name Purpose
wxLB_ALWAYS_SB Always show a vertical scroll bar
wxLB_HSCROLL Create hortizontal scroll bar when the contents are too

wide
wxLB_NEEDED_SB Only show a vertical scroll bar when all the contents

can not be seen
wxLB_SORT The items are sorted into alphabetical order

Selection Mode

This control uses the following flags to define its selection style

Flag Name Purpose
wxLB_SINGLE Creates a single selection list
wxLB_MULTIPLE Creates a multiple selection list, where the user can

toggle contents between selection states
wxLB_EXTENDED Creates the extended multiple selection list, user can

select multiple items while holding down the Shift key

Spin Ctrl

A wxSpinCtrl is a combination of a text control and a spin button control. It allows a user
to alter the value by using the up or down buttons.

Figure 9.72 – The wxSpin control

Edit Style

This control uses the following flags to define the text control style

Flag Name Purpose
wxTE_AUTO_URL Highlights URLs and sends URL events when the

mouse is over them.
wxTE_BESTWRAP Causes the text in the control to wrap at word or

other character boundaries.

wxTE_CAPITALIZE Causes the first letter to be capitalised.
wxTE_CENTRE Text in this control will be centered.
wxTE_CHARWRAP Wrap lines that are too long to be shown entirely.
wxTE_DONTWRAP Don’t wrap at all, show a horizontal scrollbar

instead.
wxTE_LEFT Text in this control will be left justified.
wxTE_MULTILINE This flag allows the controls to show multiple lines

of text.
wxTE_NOHIDESEL This flag causes the selected text to be displayed

even when the control loses focus.
wxTE_PASSWORD If this flag is set all text will show up as asterisks

‘*’.
wxTE_PROCESS_ENTER Setting this flag means that an Enter event will be

triggered when the Enter key is pressed, otherwise
the Enter key event will be used internally.

wxTE_PROCESS_TAB Normally the TAB key is used to change the focus
from the current control to another control. This
flag alters that behaviour and sends a TAB event to
this control.

wxTE_READONLY This flag prevents users from editing the contents
of this control.

wxTE_RICH Uses the Rich Edit control under windows.
wxTE_RICH2 Uses the Rich Edit control version 2 or 3 under

windows.
wxTE_RIGHT Text in this control will be right justified.

Maximum Value

This integer property controls the maximum value the user can enter. If they enter
a higher value the control will only return the maximum allowed.

Minimum Value

This integer property controls the minimum value a user can enter.

Spin Control Style

This control uses the following flags to define the spin button style

Flag Name Purpose
wxSP_ARROW_KEYS User can use the arrow keys to alter the values
wxSP_WRAP The controls value will wrap if it exceeds its maximum

or minimum values

Owner Drawn Combo Box

The wxOwnerDrawnComboBox is a combo box that allows you to control the way it
looks. For example you could use it to draw an icon before the text. However to use it in
this manner you would need to create a new control that derives from it. This control is
therefore of little use, unless you have a derived control in which case you can change the
base class to use your own variant.

Figure 9.73 – The wxOwnerDrawnComboBox control

Calendar Ctrl

The wxCalendarCtrl allows the user to select a day, month and year.

Figure 9.74 – The wxCalendarCtrl control

Calendar Style

This control uses the following flags to define the text control style

Flag Name Purpose
wxCAL_MONDAY_FIRST Sets Monday to be the first

day of the week
wxCAL_NO_MONTH_CHANGE If this option is set the user

will be unable to change the
month

wxCAL_NO_YEAR_CHANGE If this option is set the user
will be unable to change the
year

wxCAL_SEQUENTIAL_MONTH_SELECTION If this option is set the month
year selection is shown in a
compact style

wxCAL_SHOW_HOLIDAYS If this option is set the
holidays will be highlighted
in the control

wxCAL_SHOW_SURROUNDING_WEEKS If this option is set the
months previous and
following weeks will be

shown
wxCAL_SUNDAY_FIRST Sets Sunday to be the first

day of the week

Selected Date

This property sets the date the calendar control is set to by default

The Rest

Tree Ctrl

The wxTreeCtrl is useful for displaying information in a hierarchical manner. The most
common uses for this are the drive and directory side bar in Windows Explorer or the
history bar in a browser. The control allows you to customise the appearance of the twist
buttons and wether icons are displayed. Currently wxDev-C++ has no inbuilt method to
help with displaying icons.

Figure 9.75 – The wxTreeCtrl control

This control has the following unique properties.

Items

I guess this property should produce an editor to allow you to add a list of items
that will be displayed when the control is created. At present this property does
nothing.

Tree Control Styles

This control uses the following flags to define the tree control style

Flag Name Purpose
wxTR_COLUMN_LINES This flag appears to have been

removed in recent versions of
wxWidgets. The IDE will ignore it
if you try to use it

wxTR_DEFAULT_STYLE Choose the best style for the
current platform

wxTR_EDIT_LABELS This flag allows the user to edit the
tree control labels at runtime

wxTR_EXTENDED Allow disjoint items to be selected
wxTR_FULL_ROW_HIGHLIGHT When item is selected this flag

ensures the whole row is
highlighted not just the label

wxTR_HAS_BUTTONS This flag draws + and – buttons by
each item that contains children

wxTR_HAS_VARIABLE_ROW_HEIGHT This flag causes the control to
adjust to different height item

wxTR_HIDE_ROOT This flag causes the root node to
be hidden

wxTR_LINES_AT_ROOT Show lines between root items as
long as wxTR_HIDE_ROOT is
true and wxTR_HIDE_LINES is
false

wxTR_MULTIPLE This flag allows the user to select
multiple items

wxTR_NO_BUTTONS Stops buttons from being drawn
wxTR_NO_LINES Stop the vertical lines from being

drawn
wxTR_ROW_LINES This flag causes a contrasting

border to be displayed between
rows

wxTR_SHOW_ROOT_LABEL_ONLY This flag appears to have been
removed in recent versions of
wxWidgets. The IDE will ignore it
if you try to use it

wxTR_SINGLE The default this allows only one
item to be selected at a time

wxTR_TWIST_BUTTONS Display twist buttons

Gauge

The wxGauge has two modes of operation. The first displays a gauge which displays the
progress of time or an operation. The second is used to display activity for example
during a long operation that you have no means of measuring.

Figure 9.76 – The wxGauge control

Gauge Styles

This control uses the following flags to define the gauge style

Flag Name Purpose

wxGA_MARQUEE This flag was created for use with a patch written by
Joel Low. However this flag does not appear in the
standard distribution and should not be used

wxGA_SMOOTH Creates a gauge that updates by one pixel width at a
time

Orientation

This property has one of two values wxGA_VERTICAL or
wxGA_HORIZONTAL this affects the orientation of the gauge.

Range

This integer property sets the maximum value this gauge can display.

Value

This integer property sets the current value displayed by the gauge.

Scroll Bar

The wxScrollbar control provides a scrollbar which sends events when the user moves it.
It is up to you to catch the events and interpret them as you wish.

Figure 9.77 – The wxScrollBar control

Orientation

This property has one of two values wxSB_VERTICAL or
wxSB_HORIZONTAL this affects the orientation of the scrollbar.

Static Box

The wxStaticBox control is designed to logically group components together. It draws a
border around the controls it contains and contains a caption.

Figure 9.78 – The wxStaticBoxl control

Caption

This string property sets the name that will be displayed within the border of the
control.

Slider

The wxSlider is similar to the Scroll Bar control. It has a handle for the user to move to
set the value. It can also be used to display a value visually.

Figure 9.79 – The wxSlider control

Max

This integer property sets the maximum value this control can represent.

Min

This integer property sets the minimum value this control can represent.

Orientation

This property has one of two values wxSL_VERTICAL or
wxSL_HORIZONTAL this affects the orientation of the scrollbar.

Selection Style

This control uses the following flags to define the selection style

Flag Name Purpose
wxSL_SELRANGE This flag allows the user to select a range on the gauge
wxSL_INVERSE This flag inverts the minimum and maximum endpoints

on the gauge

Tree Control Styles

This control uses the following flags to define the tree control style

Flag Name Purpose
wxSL_AUTOTICKS This flag causes the tick marks to

be shown
wxSL_BOTTOM Displays the ticks on the bottom
wxSL_LABELS Displays minimum, maximum and

value labels
wxSL_LEFT Displays the ticks on the left and

puts the slider into the upright
position

wxSL_RIGHT Displays the ticks on the right and

puts the slider into the upright
position

wxSL_TOP Displays the ticks on the top

Static Line

The wxStaticLine control exists for the purpose of separating and grouping controls much
in the same way as the wxStaticBox does.

Figure 9.80 – The wxStaticLine control

Orientation

This property has one of two values wxLI_VERTICAL or wxLI_HORIZONTAL
this affects the orientation of the scrollbar.

Static Bitmap

The wxStaticBitmap is used to display small pictures. It has limitations that mean it
cannot be used for large images on certain platforms.

Figure 9.81 – The wxStaticBitmap control

The Static Bitmap control has the following unique property.

Picture

This property allows you to select the image that will be displayed in the control.
Clicking on the […] button displays the following dialog.

Figure 9.82 – The picture chooser dialog

Pressing the [Load] button produces an open file dialog to allow you to select an
image file. Once you click the [OK] button the image is converted into an XPM
image and saved in the projects Image folder.

Status Bar

The wxStatusBar control is a narrow bar which sits at the bottom of a frame. It can be
divided into a number of separate fields which are used to display small amounts of
information.

Figure 9.83 – The wxStatusBar control

The Status Bar control has the following unique properties.

Fields

Clicking on the […] button in this property produces the field editor.

Figure 9.84 – The statusbar field editor

On the righthand side you can enter a caption to be displayed in this field as well
as the size of the field. Clicking the [Add] button causes the field to be added to
the list of fields on the left. The bottom of the control also displays a status bar
with your fields add to it so you can see if the sizes are as you want them to be.

There is no provision to edit fields once you have created them, but you can
rearrange them using the [Move Up] and [Move Down] buttons. You can also
delete them with the [Delete] button.

Statusbar Styles

This control uses the following flag to define its style

Flag Name Purpose
wxST_SIZEGRIP This flag displays a sizing grip on the righthand side of

the control (Windows 95 only)

Window

This category contains the controls that are used as parents to other controls.

Panel

The wxPanel control derives from wxWindow without adding much functionality. It is
generally used as a container for other controls. It is also excellent for using as a base
class to derive your own visual controls from.

One point to note is that if you add this to a frame in wxDev-C++ it will expand to fill the
whole of the frame. This is the correct behaviour if the panel is the first or only
component on the frame. However if you already have other controls on the frame it
expand and cover them which is not the correct behaviour. To avoid this it is advisable to
either add a panel or a sizer as your first component on the frame.

Figure 9.85 – The wxPanel

The Panel control has no extra properties.

Note Book

The wxNotebook is a control to hold multiple windows displaying one at a time. The
displayed window is selected by clicking on its tab.

Figure 9.86 – The wxNotebook control

The notebook control has the following unique property.

Notebook Styles

This control uses the following flags to define the tree control style

Flag Name Purpose
wxNB_BOTTOM This flag causes the tabs to be

displayed on the bottom
wxNB_FIXEDWIDTH Makes all the tabs the same width

(Windows only)
wxNB_LEFT This flag causes the tabs to be

displayed on the left
wxNB_MULTILINE Tabs are displayed on multiple

lines (Windows only)
wxNB_NOPAGETHEME Draws tabs in a solid colour not as

a gradient (Windows only)
wxNB_RIGHT This flag causes the tabs to be

displayed on the right

Note Book Page

A wxNotebook can take any wxWindows as a child page. wxDev-C++ simplifies the
creation of notebooks by using wxPanel as the default control to use as a notebook page.
If you wish to use other controls as notebook pages you will need to alter the Base Class
property to match.

To edit the page for example to add new controls you need to click on the tab for the page
you wish to edit. Then add controls to that page.

Figure 9.87 – The note book page

The control has the following unique property.

Label

This string property sets the caption that will appear on the tab for this page.

Grid

The wxGrid class is designed to work with tabular data. The most common use for this
style of control is in spreadsheet programs such as Microsoft Excel.

Figure 9.88 – The wxGrid control

The Grid control has the following unique properties.

Column Count

This integer property sets the number of columns contained in the grid.

Column Width

This integer property sets the default width of the columns in the grid.

Grid Selection

This property uses one of three exclusive flags to control

Flag Name Purpose
wxGridSelectCells Clicking on a cell causes that cell to be highlighted
wxGridSelectColumns Clicking on a cell causes all cells in that column to

be highlighted
wxGridSelectRows Clicking on a cell causes all cells in the row to be

highlighted

Label Column Width

This integer property sets the width of the column labels.

Label Row Height

This integer property sets the height of the row labels.

Row Count

This integer property sets the number of rows contained in the grid.

Row Height

This integer property sets the default height of the rows in the grid.

Scrolled Window

The wxScrolledWindow control is a window that has a client area which can be larger
than the actual size of the window. It this case it will provide scrollbars which give you
the control to move the contents of the client area.

Figure 9.89 – A wxScrolledWindow with scrollbars to control its larger client area

The Scrolled Window control has the following unique property

Scrolled Window Styles

This property has just one flag

Flag Name Purpose
wxRetained This only has meaning on the Motif platform to

speed up refreshing

Html Window

The wxHtmlWindow has the single purpose of allowing you to display simple HTML
documents. It is able to render most HTML documents, though it seems to have problems
with tables. It is not suitable for use with embedded scripting languages, CSS or other
advanced web documents.

Figure 9.90 – The wxHtmlWindow displaying part of the project site

The Html Window control has the following unique property

HTML Window Styles

This property has the following flags.

Flag Name Purpose
wxHW_NO_SELECTION Prevent the user from selecting text
wxHW_SCROLLBAR_AUTO Display scrollbars if the document is larger

than the window
wxHW_SCROLLBAR_NEVER Never display scrollbars

Splitter Window

The wxSplitterWindow controls two subwindows. It allows these to be resized via a sash
handle between to two.

Figure 9.91 – The Splitter Window control

The Splitter Window control has the following unique properties.

Orientation

This property has one of two values wxVERTICAL or wxHORIZONTAL this
affects the orientation of the scrollbar.

Sash Position

This integer property gives the initial position of the sash. If this value is positive,
it specifies the size of the upper or left pane depending on orientation. If it is
negative, its absolute value gives the size of the lower or right pane. A value of 0
will make both panes the same size. This will be set automatically as you add
controls to the splitter window, however you can alter it to suit.

Splitter Window Styles

This property has the following flags.

Flag Name Purpose
wxSP_3D Draws 3D border and sash
wxSP_3DBORDER Draws 3D border
wxSP_3DSASH Draws 3D sash
wxSP_BORDER Draws standard border
wxSP_LIVE_UPDATE Resizes child windows when sash is moved,

otherwise just a line is drawn until the sash is
released

wxSP_NO_XP_THEME On Windows XP control assumes pre-XP look
wxSP_NO_BORDER Draws no border (the default setting)
wxSP_PERMIT_UNSPLIT Always allow the child panes to be unsplit

Toolbar

The Toolbar palette contains all the components that can be used with toolbars. The
toolbar is a recognizable part of most GUI applications. For example here is a part of the
toolbar in wxDev-C++.

Figure 9.92 – Part of the toolbar in wxDev-C++

To see how the toolbar designer works in wxDev-C++ we will create a sample project
and add a toolbar to it with one each of the components.

Open wxDev-C++
Select File|New|Project…
Select wxWidgets Frame
Change Project Name to “ToolbarSample”
Make sure C++ Project is selected
Click the [OK] button
Create a new folder in your projects
Call the folder “ToolbarSample”
Save the project in this folder
On the next dialog check the Resize Border and Max Button
Click the [Create] button

You will now have the usual blank frame.

Change the Component Palette to the Toolbar Palette. You will find that most of the
components are already familiar to you from the Controls palette. We will start by
looking at the Toolbar itself.

Tool Bar

The wxToolbar control can only be used on a wxFrame control. In the designer the
toolbar will jump to the top of the form designer.

Figure 9.93 – The Toolbar control placed and selected on the form designer

To add controls to the toolbar you need to make sure the toolbar is selected as above, then
select the tool you wish to add from the component palette. Now drop the control onto the
toolbar. If you don’t do this you will get the following warning.

Figure 9.94 – Result of trying to drop a tool component somewhere other than the toolbar

Toolbar Styles

This control uses the following flags to define its style

Flag Name Purpose
wxTB_DOCKABLE Creates a toolbar that can be docked and

undocked (Only on Linux under GTK)

wxTB_FLAT Specifies that the toolbar should have a flat
appearance

wxTB_HORIZONTAL Specifies a horizontal layout of controls
wxTB_HORIZ_LAYOUT Specifies that text and images should be

displayed alongside alongside each other not
stacked

wxTB_HORIZ_TEXT This is a shortcut that is the same as
specifying wxTB_HORIZ_LAYOUT and
wxTB_TEXT

wxTB_NOALIGN Windows only flag that affects the
alignment with the frame.

wxTB_NODIVIDER Specifies if a divider should be shown at the
top of the toolbar

wxTB_NOICONS Specifies that the images are not shown in
toolbar buttons

wxTB_TEXT Specifies that text should be displayed in the
toolbar buttons

wxTB_VERTICAL Specifies a vertical layout of controls

Let us add a toolbar to the frame.

Select the toolbar component and drop it onto the frame.
Alter the toolbar style wxTB_TEXT to true.

That is it for this control, so let us look at the others.

Tool Button

The tool button is similar to a wxBitmapButton, however it can only be placed in a
toolbar. Depending on the toolbar settings it can display either a bitmap, text or both
together.

Bitmap

This property is the same for the BitmapButton. See BitmapButton under Controls
for more details.

Label

This property is a string that sets the label that will appear on the button

Type

This control uses the following flags to define its view style

Flag Name Purpose
wxITEM_NORMAL Creates a button which acts like a normal button

wxITEM_RADIO Creates a button which forms a radio group, if one
button of this type is selected the others are
unselected.

wxITEM_CHECK Creates a toggle style button, pressing it toggles
whether it is selected or not.

Now let us try some of these buttons out in our sample project.

Drop 4 ToolButtons onto the Toolbar, remember to select the toolbar inbetween.
Set the following properties.

WxToolButton1 - Design time properties

Bitmap Browse to the Icon directory in the Dev-Cpp folder and select
Smile.ico.

Label Alter this to read ‘Happy?’
Type Make sure this is set to wxITEM_NORMAL

WxToolButton2 - Design time properties

Bitmap Browse to the Icon directory in the Dev-Cpp folder and select
Goofy.ico.

Label Leave this empty
Type Make sure this is set to wxITEM_RADIO

WxToolButton3 - Design time properties

Bitmap Browse to the Icon directory in the Dev-Cpp folder and select
Ufo.ico.

Label Leave this empty
Type Make sure this is set to wxITEM_RADIO

WxToolButton4 - Design time properties

Bitmap Browse to the Icon directory in the Dev-Cpp folder and select
Food.ico.

Label Alter this to read ‘Hungry?’
Type Make sure this is set to wxITEM_CHECK

You should end up with something resembling this.

Figure 9.95 – The toolbar with buttons at design time

You will notice that it looks strange, the buttons are not quite aligned with the toolbar and
the images are cut-off, also the labels don’t appear. Don’t worry it won’t look like this at
runtime. In fact let us prove that.

Press <F9> to compile and run.

You should now see a toolbar that looks like this.

Figure 9.96 – The toolbar sample with various buttons

You will immediately notice that the buttons and the toolbar have resized to
accommodate the size of the icons and the text. Play around with it and see what the
different buttons do.

Separator

The separator has no properties and merely creates a gap between controls. Depending on
the platform this gap may be appear only as a space or it may be drawn. The separator
control at present doesn’t work well with the toolbar style wxTB_TEXT. It is not
recommended to use them together.

Edit

The Edit control is just a wxTextCtrl. See Edit under Controls for more details.

CheckBox

The CheckBox control is just a wxCheckBox. See CheckBox under Controls for more
details.

RadioButton

The RadioButton is just a wxRadioButton. See RadioButton under Controls for more
details.

ComboBox

The ComboBox control is just a wxComboBox. See ComboBox under Controls for more
details.

SpinCtrl

The SpinCtrl control is just a wxSpinCtrl. See SpinCtrl under Controls for more details.

Drop one each of these controls, other than the seperator onto the toolbar sample in order.
You may need to stretch out the frame to see all the controls. You will end up with
something like this.

Figure 9.97 – The finished toolbar sample in the design view

We will now compile it once more.

Press <F9> to compile and run the sample.

Figure 9.98 – The compiled toolbar sample

Advanced Topic – Reordering Toolbar Components

Occastionally you will layout the components on your toolbar only to think later I wish I
had placed those buttons in a different order. (Of course this would not really happen
because you would plan the GUI in advance).

wxDev-C++ allows you to select the components on the toolbar and reorganise them by
dragging them into different positions. You can try it with the toolbar sample we have
created. But you will notice at compile time that the components have not changed
position. If you select the toolbar and right click, you can choose ‘Change Creation
Order’ to reorder the components creation order.

Menu

The Menu palette contains all items related to menus. At present this is limited to Menu
Bar and Popup Menu. The Menu bar appears along the top of a wxFrame, above the
toolbar if there is one.

Figure 9.99 – The menu bar in wxDev-C++

A popup menu is usually connected to an event like a right mouse click when it will be
made visible.

Figure 9.100 – A popup menu

To see how the menu designer works in wxDev-C++ we will create a sample project and
add a menu bar and a popup menu to it.

Open wxDev-C++
Select File|New|Project…
Select wxWidgets Frame
Change Project Name to “MenuSample”
Make sure C++ Project is selected
Click the [OK] button
Create a new folder in your projects
Call the folder “MenuSample”
Save the project in this folder
Click the [Create] button

You will now have the usual blank frame.

Change the Component Palette to the Menu Palette. We will start by looking at the
Menubar itself.

MenuBar

The behaviour of the MenuBar may seem a little strange the first time you use it. It is not
like the other components which you can drop on the form and they look like the
compiled component.

To test this we will drop a MenuBar on our sample project.

Select a MenuBar
Click anywhere on the form to place it.

You will find that instead of a bar at the top of the screen you get a funny little box like
this.

Figure 9.101 – A MenuBar represented in the form designer

Now you might wonder what to do with this strange box. It won’t let you resize it, double
clicking on it does nothing either. The answer is in the properties.

Caption

This property is at present unused.

Menu Items

This is the important property, clicking on the button […] that appears in the
Property Inspector produces the Menu Item Editor.

Figure 9.102 – The Menu Item Editor

The Menu Item Editor allows you to create new menu entries. It also allows you
access to the various menu properties. Some of these are the same as the general
item properties, like ID Name and ID Value. We will consider the other
properties.

Type

Menu Item Type Purpose
Menu Item This menu item will be a normal menu item
Seperator This menu item will be drawn as a line to

separate different parts of the menu
Check Item This item will be created with a check box
Radio Item This item will be created as part of a radio

group
File History The file history item makes it easier to

implement a MRU (Most Recently Used)
file list

Caption

This string property sets the text that will be shown for this item. If any
letter in this string is proceded by a ‘&’ ampersand then this letter will be
used as the menu options mnemonic.

Additionally the caption can include a keyboard accelerator. This is
achieved by appending ‘\t’ to the end of the caption followed by a
command key ‘CTRL’, ‘SHIFT’ or ‘ALT’ then a ‘-‘ or ‘+’ sign followed
by the accelerator key. See Chapter 11 Mnemonics and Keyboard
Accelerators for more details.

Checked

This property determines if a checkable menu item is created in a checked
or unchecked state.

Enabled

This property determines if the menu item is enabled or disabled upon
creation.

Hint

This string property allows you to set a hint that describes the menus
purpose. By default this string will be displayed in a status bar, if one
exists.

Bitmaps

The Bitmap property allows you to specify a bitmap that will be displayed
alongside the menu item. Usually this helps to clarify its purpose.

Using the Menu Editor

When you first open the Menu Editor you will notice that most of the controls are
disabled. The ‘Create Submenu’ button doesn’t do anything at this stage, since you need
a root menu item to add the submenu to. The OK button will close the dialog saving the

changes you have made and the Cancel button will close the dialog without saving any of
the changes you have made.

To start therefore, you need to use the Add Item button. We will try this to see how it
works.

If you don’t have the Menu Editor open, then open it
Click the [Add Item] button

You will notice that the tree control to the left now has a single item in it. This has a
default name of MenuItem1. This is a root menu item, this means that it will appear along
the top of the menu bar.

Change the Caption to be ‘&File’
Then click in the box ID Name

You should see that the default ID name value is created for you. (Or you could use the
drop down box to select a predefined special meaning ID. We shall stick with the
defaults.) We will leave the most of the other values at their defaults.

Change the Hint property to read ‘This is the root file menu’
Click the [Apply] button.

Now we shall add another root level item.

Click the button [Add Item]
Change the Caption to be ‘&Help’
Click in the ID Name box
Change the Hint property to read ‘This is the root help menu’
Click the [Apply] button

We now have two root items like this.

Figure 9.103 – The two root menu items

Now we want to add children to the root items.

Select the File root by clicking on it.
Now click on the button [Create Submenu]
Change the Caption to ‘Item with Picture’
Click in the ID Name box
Change the Hint property to read ‘This is a picture menu item’
Click on the [Browse] button next to bitmaps
Click on the [Load] button

Browse to the Icons folder in the wxDev-C++ install folder
Select the ‘Danger’ icon
Click the [Apply] button

You will now have three items the second one is indented, this is because it is a child of
the item above. Since it is indented one level it will appear as the first item on the File
drop down menu.

Select the File root by clicking on it.
Now click on the button [Create Submenu]
Change the Caption to ‘Disabled Item’
Click in the ID Name box
Change the Hint property to read ‘This is a disabled menu item’
Click the [Apply] button

Select the File root by clicking on it.
Now click on the button [Create Submenu]
Change the Caption to ‘Parent Item’
Click in the ID Name box
Change the Hint property to read ‘This menu item has a child’
Click the [Apply] button

The last item we created will be used to hold a child menu.

Select the item ‘Parent Item’ by clicking on it
Now click on the button [Create Submenu]
Change the Caption to ‘Child Item’
Click in the ID Name box
Change the Hint property to read ‘This menu item is a child’
Click the [Apply] button

Now we will create other types of menu.

Select the item ‘&Help’ by clicking on it
Now click on the button [Create Submenu]
Change the Type property to ‘Checked Item’
Change the Caption to ‘Checked Item’
Click in the ID Name box
Changed the Checked property to True
Change the Hint property to read ‘This is a checked item’
Click the [Apply] button

Select the item ‘&Help’ by clicking on it
Now click on the button [Create Submenu]
Change the Type property to ‘Seperator’
Click the [Apply] button

Select the item ‘&Help’ by clicking on it
Now click on the button [Create Submenu]
Change the Type property to ‘Radio Item’
Change the Caption to ‘First Radio Item’
Click in the ID Name box
Changed the Checked property to True
Change the Hint property to read ‘This is a radio item’
Click the [Apply] button

Select the item ‘&Help’ by clicking on it
Now click on the button [Create Submenu]
Change the Type property to ‘Radio Item’
Change the Caption to ‘Second Radio Item’
Click in the ID Name box
Changed the Checked property to False
Change the Hint property to read ‘This is a radio item’
Click the [Apply] button
Click the [OK] button

The list of menu items should now look like this

Figure 9.104 – The completed menu

Drop a panel component on the form
Finally drop a status bar on the form
Now press <F9> to compile and run

Figure 9.105 – The completed menu at compile time

We will finish the sample by looking at the popup menu.

PopupMenu

A Popup menu is a menu that appears under certain circumstances. For example right
click on wxDev-C++ and a menu will appear. This is a Popup menu. You can design the
menu in the form designer, but to show it you need to use some code.

Select a PopupMenu from the component palette
Drop it on the design form

Again you will see a little square. When you select the square you will see that the Popup
menu has the same properties as a Menubar.

Select the PopupMenu
Click on the property ‘Edit Menu Items’
Now create two items
Call the first ‘Parent Item’
Call the second ‘Item two’
Click the [Apply] button after creating each one
Select ‘Parent Item’
Click the [Create Submenu] button
Call this item ‘Child Item’
Click the Apply button
Click the [OK] button

Now we need to be able to show the Popup menu.

Select a Button control from the component palette
Click on the designer form to place it
Select the Event Tab
In the OnClick event drop down the box and select <Add New Function>
Underneath the line // insert your code here add the line
PopupMenu(WxPopupMenu1,WxButton1->GetRect().x,WxBut ton1-
>GetRect().GetBottom());

Press <F9> to compile and run

Now try pressing the button to see your newly created menu. Try playing with the menu
item editor to add new items of different types.

It is also possible to rearrange items by dragging and dropping them in the tree list. Just
dragging an item will place it after the item you drag it to. If you hold down the Shift key
it will place it as a child of the item you drag it to.

Figure 9.106 – The completed menu sample

Dialogs

Last chapter we looked at creating dialogs. wxDev-C++ comes with a number of standard
dialogs that are ready for you to use. These include file opening/saving dialogs, printing
dialogs and message dialogs. This section takes a look at each of these. The next chapter
will cover how to actually display and retrieve values from some of these dialogs.

Open File Dialog

The OpenFileDialog is designed to allow the user to choose a file to open. The
programmer may set a default location and file name or limit the user to files by a certain
name.

The Open and SaveFileDialogs in wxDev-C++ are both wxFileDialogs then only
difference is that the first is created with the wxFD_OPEN flag set the second with
wxFD_SAVE set. This distinction is hidden from the user though.

Figure 9.107 – The OpenFileDialog (wxFileDialog)

Default Dir

This string property allows you to set a default directory for the dialog to open at.
For example:

C:/Program Files/

Default File

This string property contains a name of the file you want to select by default. For
example to create a dialog with the file ‘Default.txt’ preselected you would use
this line.

Default.txt

Extensions

This string property allows the user to specify which types of file can be selected.
Several extensions can be registered separated by a ‘|’. The format to register an
extension is <Description> |*.<Extension>. For example to create an file dialog
that only allows the user to select .htm or .txt files you would use this line.

HTML files (*.htm)|*.htm|*.html|Text files (*.txt)|*.txt

File Dialog Style

This control uses the following flags to define its style

Flag Name Purpose
wxCHANGE_DIR If this flag is set the programs current working

directory will be changed to the directory the user
has chosen to open the file from

wxFILE_MUST_EXIST Only allows existing file to be chosen
wxHIDE_READONLY Hides read only files
wxMULTIPLE Allows the user to select multiple items to open

Message

This string property allows you to set the message the user will see on the top of
the dialog.

Save File Dialog

Much of the information for the OpenFileDialog applies to the SaveFileDialog. Only the
differences will be covered here.

Figure 9.108 – The SaveFileDialog (wxFileDialog)

In fact the only difference is in the style flags.

File Dialog Style

This control uses the following flags to define its style

Flag Name Purpose
wxCHANGE_DIR If this flag is set the programs current working

directory will be changed to the directory the
user has chosen to save the file to

wxHIDE_READONLY Hides read only files.
wxOVERWRITE_PROMPT If this flag is set then a dialog will be displayed

if the file already exists to alert the user.

Progress Dialog

The wxProgressDialog allows you to display a dialog with a message and a progress bar.
This is usually used during lengthy operations, such a saving or modifying large files, or
carrying out intensive calculations. It is possible to display other information such as the
time the operation has taken and an estimate of when it will complete.

Figure 9.109 – The Progress Dialog

Auto Show

If this Boolean property is set to true the dialog will disappear as soon as the
guage reaches the end.

MAX Value

This integer property allows you to set the maximum value the gauge can reach.

Message

This string property allows you to set the message that appears on the body of the
dialog.

Progress Dialog Style

This control uses the following flags to define its style

Flag Name Purpose
wxPD_APP_MODAL Stops the user from interacting with any part of the

application while the dialog is shown, not just the
parent window

wxPD_AUTO_HIDE Causes the dialog to disappear once the guage reachs
its maximum value

wxPD_CAN_ABORT Displays a Cancel button on the dialog
wxPD_CAN_SKIP Displays a Skip button on the dialog
wxPD_ELAPSED_TIME Causes the dialog to show how much time has

elapsed since the dialog was created
wxPD_ESTIMATED_TIME Causes the dialog to display much much time the

operation is estimated to take
wxPD_REMAINING_TIME Causes the dialog to show how much time is left
wxPD_SMOOTH Causes the guage to progress smoothly

Title

This string property allows you to set the message that appears on the caption of
the dialog.

Colour Dialog

The wxColourDialog is used to offer your users a means to select different colours.

Figure 9.110 – The ColourDialog

The ColourDialog has no extra properties.

Dir Dialog

The wxDirDialog is similar to the file dialog, except instead of allowing the user to select
a file, it allows them to select a directory.

Figure 9.111 – The DirDialog

Default Dir

This string property allows you to set a default directory for the dialog to open at.
For example:

C:/Program Files/

Dir Dialog Style

This control uses the following flags to define its style

Flag Name Purpose
wxDD_NEW_DIR_BUTTON Causes a create new directory button to be displayed

on the dialog

Message

This string property allows you to set the message the user will see on the top of
the dialog.

Find Replace Dialog

The wxFindReplaceDialog is designed to allow the user to search for or replace words in
a text based control. Unlike other dialogs it must have a parent since it uses this for
searching. It also needs to be shown non-modally.

Figure 9.112 – The wxFindReplaceDialog in find mode

Figure 9.113 – The same dialog in replace mode

FindString

This string property allows you to set the string that you are searching for.

Flags

This control uses the following flags to control its operation

Flag Name Purpose
wxFR_DOWN If true start searching from top down. If false search

from bottom up
wxFR_MATCHCASE If true make the search case sensitive. If false make

search case insensitive
wxFR_WHOLEWORD If true match to whole words only, otherwise match

to partial words

Styles

This control uses the following flags to define its style

Flag Name Purpose
wxFR_NOMATCHCASE This stop the user from allowing case sensitive

matching
wxFR_NOUPDOWN This stops the user from altering up down searching
wxFR_NOWHOLEWORD This stops the user from changing wholeword

searching
wxFR_REPLACEDIALOG This alters whether the find or find replace dialog is

shown

ReplaceString

This string property allows you to set the string that will be used as a replacement.

Title

This string property allows you to set the message that appears on the caption of
the dialog.

Font Dialog

The font dialog allows the user to select a font from those installed on their system. It
also allows them to alter various attributes such as font style, size and colour.

Figure 9.114 – The wxFontDialog

The Font Dialog has no extra styles.

Page Setup Dialog

The wxPageSetupDialog displays a dialog that allows the user to alter print settings such
as paper size and orientation.

Figure 9.115 – The wxPageSetupDialog

MarginBottomRightX

This integer property allows you to set the default right hand margin size.

MarginBottomRightY

This integer property allows you to set the default bottom margin size.

MarginTopLeftX

This integer property allows you to set the default left hand margin size.

MarginTopLeftY

This integer property allows you to set the default top margin size.

MinMarginBottomRightX

This integer property allows you to set the minimum size right hand margin the
user can choose.

MinMarginBottomRightY

This integer property allows you to set the minimum size bottom margin the user
can choose.

MinMarginTopLeftX

This integer property allows you to set the minimum size left hand margin the
user can choose.

MinMarginTopLeftY

This integer property sets the minimum size top margin the user can choose.

PaperId

This drop down property contains a long list of standard paper sizes that you can
use to set the default shown.

Print Dialog

The wxPrintDialog displays the standard print dialog. This allows you to collect the
necessary information to send to a printing process.

Figure 9.116 – The wxPrintDialog

From Page

This integer property allows you to set the page number to start printing from.

Max Page

This integer property allows you to set the maximum page number.

Min Page

This integer property allows you to set the minimum page number.

NumberOfCopies

This integer property allows you to set the number of copies to print.

PrintToFile

This boolean property allows you to set whether the “Print to file” check box is
checked or not.

Selection

This boolean property allows you to set whether the “Selection” radio button is
checked or not.

To Page

This integer property allows you to set the page number to print to.

Message Dialog

The wxMessageDialog allows you to display a message for your users. It allows a certain
amount of customisation of the buttons and icon displayed.

Figure 9.117 – The wxMessageDialog

Caption

This string property allows you to set the message that appears on the caption of
the dialog.

Message

This string property allows you to set the message that appears on the body of the
dialog.

Message Dialog Style

This control uses the following flags to define its style

Flag Name Purpose
wxCANCEL Show a Cancel button
wxCENTRE Centre the massage on the dialog
wxICON_ERROR Show an error icon
wxICON_EXCLAMATION Show an exclamation mark icon
wxICON_HAND Same as wxICON_ERROR
wxICON_INFORMATION Show a information (i) mark icon
wxICON_QUESTION Show a question mark icon
wxNO_DEFAULT Use with the wxYES_NO flag to make the No button

selected by default
wxOK Show an OK button
wxYES_DEFAULT Use with wxYES_NO flag to make the Yes button

selected by default
wxYES_NO Show Yes and No buttons

Text Entry Dialog

The wxTextEntryDialog allows the user to input a single line, it could be used as a login
box, or to gather simple information.

Figure 9.118 – The Text Entry Dialog

Caption

This string property allows you to set the message that appears on the caption of
the dialog.

Dialog Style

This control uses the following flags to define its style

Flag Name Purpose
wxCANCEL Show a Cancel button
wxCENTRE Centre the massage on the dialog
wxNO_DEFAULT Use with the wxYES_NO flag to make the No button

selected by default
wxOK Show an OK button
wxYES_DEFAULT Use with wxYES_NO flag to make the Yes button

selected by default
wxYES_NO Show Yes and No buttons

Edit Style

This control uses the following flag to define the action of the edit control

Flag Name Purpose
wxTE_PASSWORD Display the users text entry as a line of ‘*’ asterisks

Message

This string property allows you to set the message that appears on the body of the
dialog.

Value

This string property allows you to set the default contents of the edit control.

Password Entry Dialog

This control is the same as the wxTextEntryDialog since it derives from it. The only
difference is that the users entry is displayed as a line of asterisks by default.

Figure 9.119 – The Password Entry Dialog

Caption

This string property allows you to set the message that appears on the caption of
the dialog.

Dialog Style

This control uses the following flags to define its style

Flag Name Purpose
wxCANCEL Show a Cancel button
wxCENTRE Centre the massage on the dialog
wxNO_DEFAULT Use with the wxYES_NO flag to make the No button

selected by default
wxOK Show an OK button
wxYES_DEFAULT Use with wxYES_NO flag to make the Yes button

selected by default
wxYES_NO Show Yes and No buttons

Message

This string property allows you to set the message that appears on the body of the
dialog.

Value

This string property allows you to set the default contents of the edit control.

Single Choice Dialog

The wxSingleChoiceDialog presents a list of choices to the user and allows them to select
just one.

Figure 9.120 – The Single Choice Dialog

Caption

This string property allows you to set the message that appears on the caption of
the dialog.

Items

This string list property allows you to set the list of items that the user can choose
from.

Message

This string property allows you to set the message that appears on the body of the
dialog.

Message Dialog Style

This control uses the following flags to define its style

Flag Name Purpose
wxCANCEL Show a Cancel button
wxCENTRE Centre the massage on the dialog
wxNO_DEFAULT Use with the wxYES_NO flag to make the No button

selected by default
wxOK Show an OK button
wxYES_DEFAULT Use with wxYES_NO flag to make the Yes button

selected by default
wxYES_NO Show Yes and No buttons

Multi Choice Dialog

The wxMultiChoiceDialog is the same as the Single Choice Dialog with the exception
that it allows the user to make multiple choices.

Figure 9.121 – The Multi Choice Dialog

Caption

This string property allows you to set the message that appears on the caption of
the dialog.

Items

This string list property allows you to set the list of items that the user can choose
from.

Message

This string property allows you to set the message that appears on the body of the
dialog.

Message Dialog Style

This control uses the following flags to define its style

Flag Name Purpose
wxCANCEL Show a Cancel button
wxCENTRE Centre the massage on the dialog
wxNO_DEFAULT Use with the wxYES_NO flag to make the No button

selected by default
wxOK Show an OK button
wxYES_DEFAULT Use with wxYES_NO flag to make the Yes button

selected by default
wxYES_NO Show Yes and No buttons

Html Easy Printing

The wxHtmlEasyPrinting class is not a dialog in the same manner as the others here. It
provides a class that makes printing HTML documents extremely simple. We will use
this class in the sample application to show its power.

Footer Page

This integer property allows you to set which pages the footer string appears on.

Value Corresponds to Flag Purpose
0 wxPAGE_ODD Footer appears on odd numbered pages
1 wxPAGE_EVEN Footer appears on even numbered pages
2 wxPAGE_ALL Footer appears on all pages

Footer String

This string property allows you to set an HTML string that is displayed on the
foot of the pages. The string may contain the following macros.

Macro Purpose
@DATE@ Inserts the cuurent date in default format
@PAGENUM@ Inserts the page number

@PAGESCNT@ Inserts the total number of pages
@TIME@ Inserts the current time in default format
@TITLE@ Inserts the document title

Header Page

This integer property allows you to set which pages the footer string appears on.
The values are the same as for the header page.

Header String

This string property allows you to set an HTML string that is displayed on the
head of the pages. The string may contain the same macros as the footer.

Title

This string property allows you to set the name of the printing object. This will be
used on the print preview and setup dialogs.

System

Timer

The wxTimer allows you to execute code at predefined intervals. The timer causes an
event to be triggered whenever its time interval runs out.

AutoStart

If this property is set to true then the timer will begin to work as soon as it is
created.

Interval

This property is an integer value that determines the interval between timer events
in milliseconds.

Dial Up Manager

The wxDialUpManager class is designed to enable applications to interact with the
Internet. Via the Dial Up Manager it is possible to check if the computer is online or to
ask it to connect to the Internet. It is also possible to check events such as the computer
connecting or disconnecting from the Internet.

MMedia

Media Ctrl

The wxMediaCtrl allows you to play various types of media such as video or music using
the native control used on your platform for achieving this.

Figure 9.122 – The wxMediaCtrl before loading and running a file

The Media Control has the following unique property.

File Name

This string property contains the filename of the media file you want to play.
Don’t forget that the filename should be relative to the executable file or else the
program will not be able to find it on a different users system.

Unofficial

TreeListCtrl

The wxTreeListCtrl is a mixture of a tree control and a list control. The first column
contains the tree, the other columns contain lists. An example of this might be a file
directory displayed as a tree. For each item in the tree there could be a corresponding list
entry with file size, creation time, etc.

If you are using this control you will need to manually add the library
libwxmsw28_treelistctrl.a to the list of libraries the linker looks for.

Figure 9.123 – The wxTreeListCtrl

The Tree List Control contains the following unique properties.

Columns

This property works exactly like the editor for the List Control. For more
information look at the Columns property under List Control.

TreeList Styles

This control uses the following flags to define its style

Flag Name Purpose
wxTR_COLUMN_LINES This flag does not exist and will be

ignored by the IDE
wxTR_DEFAULT_STYLE Sets flags to the platforms native

style
wxTR_EDIT_LABELS This allows the user to edit the labels
wxTR_EXTENDED Allows disjoint items to be selected
wxTR_FULL_ROW_HIGHLIGHT Draws the selection hightlight across

the whole control, (needs the
wxTR_NO_LINES flag set on
Windows)

wxTR_HAS_BUTTONS Places ‘+’ and ‘-‘ buttons by parent
items in the control

wxTR_HAS_VARIABLE_ROW_HEIGHT Each row is drawn the correct height
to fit its item. Otherwise all rows are
the same height

wxTR_HIDE_ROOT Hides the root node
wxTR_LINES_AT_ROOT Draws lines between root items,

needs wxTR_HIDE_ROOT to be set
and wxTR_NO_LINES not to be set

wxTR_MULTIPLE Multiple items can be selected at the
same time

wxTR_NO_BUTTONS Draw this control with no buttons
wxTR_NO_LINES Hides the vertical level connectors
wxTR_ROW_LINES Draws each row in contrasting

colours
wxTR_SHOW_ROOT_LABEL_ONLY This flag does not exist and will be

ignored by the IDE
wxTR_SINGLE Only one item can be selected at a

time
wxTR_TWIST_BUTTONS If this flag and the

wxTR_HAS_BUTTONS flag are set
then the tree is drawn with Mac style
twist buttons

Sample Application Part 2 – The GUI

In the last chapter we created the frames and dialogs needed to create our sample
application. In the chapter we will complete the GUI design before we implement the
code that gets everything working. We will start on the main frame then work our way
through the Splash screen and dialogs.

The Main Frame

The Main frame will consist of a menu bar, toolbar, status bar, a side toolbar and a
notebook control. Without anymore delay let us make a start.

Open the project you created in the last chapter called HTMLEdit.
Select the editor tab labelled HTMLEditFrm.wxform.
If this tab is not available open it via the Project Manager, ‘Project’ Tab.

Now we are going to create the toolbar.

Change the component selector to Toolbar.
Select the toolbar component and drop it onto the form.
Change the toolbar’s Name property to ‘tlbMain’.

Next we are going to add the buttons and other components to the toolbar.

Add the following items from the Toolbar component palette to the toolbar.
Change the properties to match those listed.
For the bitmaps use the ones in the Tango Icons 16x16 folder.

Type Tool Button
Bitmap document-new16x16.png
Name ‘btnNewFile’
Tooltip ‘Create a new document’
Type Tool Button
Bitmap document-open16x16.png
Name btnOpenFile’

Tooltip ‘Open an existing document’
Type Tool Button
Bitmap document-save16x16.png
Name ‘btnSaveFile’
Tooltip ‘Save this document’
Type Separator
Type Tool Button
Bitmap document-print16x16.png
Name ‘btnPrint’
Tooltip ‘Print this document’
Type Tool Button
Bitmap document-print-preview16x16.png
Name ‘btnPrintPreview’
Tooltip ‘Preview this document’
Type Separator
Type Tool Button
Bitmap edit-undo16x16.png
Name ‘btnUndo’
Tooltip ‘Undo last change’
Type Tool Button
Bitmap edit-redo16x16.png
Name ‘btnRedo’
Tooltip ‘Redo last change’
Type Separator
Type ComboBox
Items ‘Heading 1’

‘Heading 2’
‘Heading 3’
‘Heading 4’
‘Heading 5’
‘Heading 6’

Name ‘cmbHeadings’
Text ‘Heading 1’
Tooltip ‘Alter the heading type’
Type Tool Button
Bitmap format-justify-left16x16.png
Name ‘btnAlignLeft’
Tooltip ‘Use inside a tag to left align text’
Type Tool Button
Bitmap format-justify-center16x16.png
Name ‘btnAlignCenter’
Tooltip ‘Use inside a tag to center align text’
Type Tool Button
Bitmap format-justify-right16x16.png

Name ‘btnAlignRight’
Tooltip ‘Use inside a tag to right align text’

You should something that looks like this in the editor

Figure 9.124 – The application toolbar in the design editor

The next component we will add is the status bar. This can be found on the Controls
palette.

Select a Status bar component and add it to the form.
Change status bar’s the Name property to ‘stsInfo’.

Next we need a sizer component to hand the form the form’s child components when it
changes size. The sizers can be found on the Sizer palette.

Select a BoxSizer component and add it to the form.
Change the sizer’s Name property to ‘szrMain’.
Make sure the sizer’s Orientation is set to wxHorizontal.

Now we need to create the side toolbar. Unfortunately we can’t use the designer for this
purpose so we need to ‘fake’ it. Instead we will use a Panel component as a parent for a
series of buttons. We have a further problem in that some of the button labels are just
text, the others are bitmaps. We need to use ordinary buttons and bitmap buttons to
achieve this.

Select the sizer you just dropped on the form.
Select a Panel from the palette, you will find this under Window.
Drop the panel onto the sizer.
Change the Name property to ‘pnlSideBar’.
Set the alignment wxEXPAND to true and make sure the other alignment options
are all set to false.
Set Border property to 0.
Set the panel’s Height to 278 and its Width to 36.

Now we want to add the buttons, these can be found on the Controls palette. Add the
controls listed in the following table altering the properties to match.

Type Button
Font Arial, Bold, size 10
Height 30
Label ‘B’
Left 3
Name ‘btnEmboldenText’
Tooltip ‘Bold text style’

Top 0
Width 30
Type Button
Font Times New Roman, Italic, size 11
Height 30
Label ‘I’
Left 3
Name ‘btnItaliciseText’
Tooltip ‘Italic text style’
Top 29
Width 30
Type Button
Font Arial, Regular, size 12, Underline
Height 30
Label ‘U’
Left 3
Name ‘btnUnderlineText’
Tooltip ‘Underlined text style’
Top 58
Width 30
Type Button
Font Times New Roman, Italic, size 12
Height 30
Label ‘F’
Left 3
Name ‘btnChangeFont’
Tooltip ‘Change font style’
Top 87
Width 30
Type Button
Font Courier, Regular, size 15
Height 30
Label ‘-‘
Left 3
Name ‘btnInsertHorizontalLine’
Tooltip ‘Insert a horizontal line’
Top 116
Width 30
Type BitmapButton
Bitmap Anchor.xpm (From the ‘Project Images’ Zip File)
Button Style wxBU_AUTODRAW
Height 30
Left 3
Name ‘btnCreateAnchorPoint’
Tooltip ‘Create an anchor point’

Top 145
Width 30
Type BitmapButton
Bitmap Link.xpm (From the ‘Project Images’ Zip File)
Button Style wxBU_AUTODRAW
Height 30
Left 3
Name ‘btnCreateHyperlink’
Tooltip ‘Create a hyperlink’
Top 174
Width 30
Type BitmapButton
Bitmap Table.xpm (From the ‘Project Images’ Zip File)
Button Style wxBU_AUTODRAW
Height 30
Left 3
Name ‘btnInsertTable’
Tooltip ‘Insert a table’
Top 203
Width 30
Type BitmapButton
Bitmap image-x-generic16x16.png
Button Style wxBU_AUTODRAW
Height 30
Left 3
Name ‘btnInsertImage’
Tooltip ‘Insert an image’
Top 232
Width 30

Now we are going to add the notebook component which will hold two pages. One of
these will hold a preview pane and an edit pane. The other will hold a preview pane only.

Select the sizer szrMain on the form.
Switch to the Window palette and select NoteBook.
Drop this into the selected sizer.
Change the Name property to ‘nbkEditor’.
Change the Alignment flag wxEXPAND to true, make sure the others are set to
false.
Set the Border property to 0.
Set the Height to 275 and the Width to 460.
Finally set the Stretch Factor to 1.

Now we need to add the pages. These can also be found on the Window palette.

Select the Notebook nbkEditor.

Select a NoteBookPage component and drop it on the notebook.
Change the Name property to ‘nbpCombinedView’.
Change the Label property to ‘Combined HTML Preview’.
Again select the Notebook nbkEditor.
Select another NoteBookPage component and drop it on the notebook.
Select it by clicking on its tab, then clicking within its page.
Change the Name property to ‘nbpPreview’.
Change the Label property to ‘Preview’.

Having added the pages we need to edit the controls they contain.

Select the Combine HTML Preview page by clicking on its tab then clicking on
the page.
From the Sizers palette select another BoxSizer.
Drop this on the page.
Change the sizer’s Name property to ‘szrCombinedView’.
Make sure the sizer’s orientation is set to wxHORIZONTAL.
Now from the Window palette select a SplitterWindow and drop on the sizer.
Make sure the splitter window’s Alignment property is set to wxEXPAND only.
Change the splitter’s Border property to 0.
Set the Height property to 248 and the Width property to 195.
Change the Name property to ‘sptCombinedView’.
Make sure the Orientation property is set to wxVertical.
And set the Stretch Factor property to 1.
Next add an HTML Window from the same palette.
Set the Name property to ‘htmCombinedPreview’.
Set the Height property to 89 and the Width property to 185.
From the Controls palette select a Memo control.
Add the control to the splitter window.
Name it ‘mmoTextEditor’.
Set the Height to 139 and the Width to 185.
Use the Strings property to clear the text displayed.
Now switch to the Preview page by clicking on its tab.
Click on its page to select it.
Add a BoxSizer to this tab and name it ‘szrPreview’.
From the Window palette add a HTML Window to the sizer.
Set the HTML Windows Alignment to wxEXPAND only.
Set the Border to 0 and Stretch Factor to 1.
Change the Name to ‘htmPreview’.

We are almost there for the Main Form. We just need to add the Menu and various
standard dialogs. We will add the menu next.

From the Menu palette select the MenuBar control.
Drop this onto a free area on the Main Form.
Name it ‘mnuMainBar’.

Then use the Menu Items property to bring up the Menu Editor and add the
following items. The option ‘Child of ..’ means make it a sub menu of … The
option ‘Root’ means it should be added as a top level item.

Type Menu Item
Location Root
Caption ‘&File’
ID Name Accept Default
ID Value Accept Default
Type Menu Item
Location Child of File
Caption ‘&New\tCtrl+N’
ID Name Accept Default
ID Value Accept Default
Hint ‘Create a new document’
Bitmap document-new16x16.png
Type Menu Item
Location Child of File
Caption ‘&Open\tCtrl+O’
ID Name Accept Default
ID Value Accept Default
Hint ‘Open an existing document’
Bitmap document-open16x16.png
Type Menu Item
Location Child of File
Caption ‘&Save\tCtrl+S’
ID Name Accept Default
ID Value Accept Default
Hint ‘Save current document’
Bitmap document-save16x16.png
Type Separator
Location Child of File
ID Name Accept Default
ID Value Accept Default
Type File History
Location Child of File
ID Name Accept Default
ID Value Accept Default
Type Menu Item
Location Child of File
Caption ‘Page Set&up’
ID Name Accept Default
ID Value Accept Default
Hint ‘Set up the printer’
Bitmap document-properties16x16.png

Type Menu Item
Location Child of File
Caption ‘Print Pre&view’
ID Name Accept Default
ID Value Accept Default
Hint ‘Preview the printed document’
Bitmap document-print-preview16x16.png
Type Menu Item
Location Child of File
Caption ‘&Print\tCtrl+P’
ID Name Accept Default
ID Value Accept Default
Hint ‘Print current document’
Bitmap document-print16x16.png
Type Separator
Location Child of File
ID Name Accept Default
ID Value Accept Default
Type Menu Item
Location Child of File
Caption ‘E&xit’
ID Name Change to wxID_EXIT
ID Value Accept Default
Hint ‘Exit this program’
Bitmap process-stop16x16.png
Type Menu Item
Location Root
Caption ‘&Edit’
ID Name Accept Default
ID Value Accept Default
Type Menu Item
Location Child of Edit
Caption ‘&Undo\tCtrl+Z’
ID Name Accept Default
ID Value Accept Default
Hint ‘Undo the last change’
Bitmap edit-undo16x16.png
Type Menu Item
Location Child of Edit
Caption ‘&Redo\tCtrl+Y’
ID Name Accept Default
ID Value Accept Default
Hint ‘Redo the last undo’
Bitmap edit-redo16x16.png
Type Separator

Location Child of Edit
ID Name Accept Default
ID Value Accept Default
Type Menu Item
Location Child of Edit
Caption ‘Cu&t\tCtrl+X’
ID Name Accept Default
ID Value Accept Default
Hint ‘Cut the select text’
Bitmap edit-cut16x16.png
Type Menu Item
Location Child of Edit
Caption ‘&Copy\tCtrl+C’
ID Name Accept Default
ID Value Accept Default
Hint ‘Copy the select text’
Bitmap edit-copy16x16.png
Type Menu Item
Location Child of Edit
Caption ‘&Paste\tCtrl+V’
ID Name Accept Default
ID Value Accept Default
Hint ‘Paste text from the clipboard’
Bitmap edit-paste16x16.png
Type Menu Item
Location Root
Caption &Help
ID Name Accept Default
ID Value Accept Default
Type Menu Item
Location Child of Help
Caption ‘&About’
ID Name Accept Default
ID Value Accept Default
Hint ‘Display the about box’
Bitmap dialog-information16x16.png

If you are still here after that great long list be glad that you aren’t writing an application
like Microsoft Word. Any way take a little break and check to see that what you have in
the menu editor looks something like the following figure.

Figure 9.125 – The list of menu items in the Menu Editor

If all is ok then close the menu editor by pressing [OK].

We have just five more items to add and all of them are dialogs.

Switch to the Dialog palette.
Select an OpenFileDialog.
Drop it on a clear area on the form.
Change its Extensions property to read ‘*.htm;*.html’.
Change the Message property to ‘Choose a file’.
Change its Name to ‘dlgFileOpen’.
Next select a SaveFileDialog.
Drop on the form.
Change the Extensions to ‘*.htm;*.html’.
Change the Message to ‘Choose a file’.
Change its Name to ‘dlgFileSave’.
Select a FontDialog and add to the form.
Change its name to ‘dlgFont’.
Select an HTMLEasyPrinting and add to the form.
Change its Footer String to ‘Printed Using Simple HTML Editor - @DATE@ -
Page @PAGENUM@ of @PAGESCNT@ Pages’.
Change its Header String to ‘@TITLE@’.
Change its name to ‘dlgPrint’.
Change its title to ‘Simple HTML Printing’.
Finally add a MessageDialog.
Change its Caption to ‘Save Changes?’.
Change its Message to ‘The contents of this file has changed\n Do you want to
save the changes?’.
Set the Message Dialog Style to wxICON_EXCLAMATION,
wxYES_DEFAULT and wxYES_NO only.
Change its Name to ‘dlgSaveChanges’.

Relax that is the main form complete. If you wish to see some reward for your hard work,
compile and run the application. Try altering the size of the form to see how the
components resize themselves to match. Try playing with the menus you should see as
you hover over them that the message on the status bar changes to tell you the menus
purpose.

Figure 9.126 – Hopefully your form looks something like this.

When you have finished playing we are going to create the About box.

The About Box

We will start by adding the bitmap for our application.

Switch to the Controls palette and select a StaticBitmap.
Drop it on the form.
We want to change the Background Color and use the Standard Color
wxWHITE.
Use the Picture property to select the ‘Splash.png’ from the ‘Project Images’ zip
file.
Change the General Styles to wxSUNKEN_BORDER.
Change Height to 145 and Width to 249.
Change the Left to 4 and Top to 3.
Change the Name to ‘bmpSplash’.

Next we want to add some labels to provide basic information to the user. We will
surround this with a Static Box.

Add the following components to the form.

Type staticbox
Caption ‘About Simple HTML Editor’
Height 71
Left 3
Name ‘stbInfoBox’
Top 150
Width 250
Type StaticText
Height 17
Label ‘Author:’
Left 9
Name ‘txtAuthor’
Top 167
Width 38
Type StaticText
Height 17
Label ‘Project Site:’
Left 9
Name ‘txtProjectSite’
Top 182
Width 64
Type StaticText
Height 17
Label ‘Icons From:’
Left 9
Name ‘txtIconsFrom’
Top 198
Width 59
Type StaticText
Height 17
Label ‘Sof.T’
Left 77
Name ‘txtAuthorsName’
Top 167
Width 30
Type HyperLinkCtrl
Height 17
Label ‘Programming with wxDev-C++’
Left 77
Name ‘hypProjectSite’

Top 182
Width 141
Type HyperLinkCtrl
Height 17
Label ‘Tango Desktop Project’
Left 77
Name hypIconsFrom
Top 198
Width 146
Type Button
Height 28
ID Name wxID_OK
Label ‘Close’
Left 81
Name btnClose
Top 224
Width 90

That is it for the About Box. You should now have something like the following image.

Figure 9.127 – The About Box in the form designer

Now we will move on to the simplest form in the project the Splash Screen. This will
appear when we start the project while the main form loads.

The Splash Screen

For this form we just add a StaticBitmap. This is used for the Image and for cutting out
the shape of the form.

Add a StaticBitmap.
Set the Name to ‘bmpSplashImage’.
Set the Picture to ‘Splash.png’.
Set the Left to 0 and the Top to 0.
Set the Height to 131 and the Width to 212.

That is it for the Splash Screen, all the magic takes place in the next chapter where we
delve into the coding. Your form designer should look like this.

Figure 9.128 – The Splash Screen in the form designer

Next we will add the components to the InsertHyperlinkDlg.

The Insert Hyperlink Dialog

While not as simple as the Splash Screen, this dialog only needs 5 controls. Using the
table add the following controls.

Type staticbox
Caption ‘Link Location’
Height 75
Left 11
Name ‘stbLinkLocation’
Top 4
Width 342
Type StaticText
Height 17
Label ‘Type in a url to link to, or choose a local link from the

dropdown box’
Left 18
Name ‘txtLinkLocation’
Top 25
Width 322
Type ComboBox
Height 21
Left 19
Name ‘cmbHyperLink’

Text ‘’
Top 43
Width 322
Type Button
Height 27
ID Name wxID_OK
Label ‘OK’
Left 12
Name ‘btnOK’
Top 88
Width 91
Type Button
Height 27
ID Name wxID_CANCEL
Label ‘Cancel’
Left 250
Name ‘btnCancel’
Top 88
Width 101

At this point you should have something that looks like this in the form designer.

Figure 9.129 – The Insert Hyperlink Dialog

The next two dialogs are a little more complex. We shall look at the Create Table dialog
next.

The Create Table Dialog

We need various different controls on this dialog. We need spin controls to alter the
numeric properties such as numbers of rows and columns. We also need radio controls to
allow us to set some exclusive properties on the table. Along with these we will use some
of the other more common controls. The first thing we must do is drop a Panel onto the
dialog. This is because the first panel added will be stretched to cover the dialog. If we
miss this step we will be messed up later. Once again follow the table below.

Type Panel
Name ‘pnlBackground’

Type StaticText
Height 17
Label ‘Rows’
Left 5
Name ‘txtRows’
Top 5
Width 31
Type StaticText
Height 17
Label ‘Cell Spacing’
Left 103
Name ‘txtCellSpacing’
Top 5
Width 63
Type StaticText
Height 17
Label ‘Cols’
Left 5
Name ‘txtCols’
Top 29
Width 24
Type StaticText
Height 17
Label ‘Cell Padding’
Left 103
Name ‘txtCellPadding’
Top 29
Width 63
Type StaticText
Height 17
Label ‘Border’
Left 5
Name ‘txtBorder’
Top 53
Width 35
Type StaticText
Height 17
Label ‘Table Width’
Left 103
Name ‘txtTableWidth’
Top 53
Width 62
Type SpinCtrl
Height 22
Left 45

Maximum Value 100
Minimum Value 0
Name ‘spnRows’
Top 5
Value 2
Width 53
Type SpinCtrl
Height 22
Left 168
Maximum Value 100
Minimum Value 0
Name ‘spnCellSpacing’
Top 5
Value 0
Width 55
Type SpinCtrl
Height 22
Left 45
Maximum Value 100
Minimum Value 0
Name ‘spnCols’
Top 29
Value 2
Width 53
Type SpinCtrl
Height 22
Left 168
Maximum Value 100
Minimum Value 0
Name ‘spnCellPadding’
Top 29
Value 0
Width 55
Type SpinCtrl
Height 22
Left 45
Maximum Value 100
Minimum Value 0
Name ‘spnBorder’
Top 53
Value 1
Width 53
Type SpinCtrl
Height 22
Left 168

Maximum Value 100
Minimum Value 0
Name ‘spnTableWidth’
Top 53
Value 0
Width 55
Type RadioBox
Caption ‘Table Alignment’
Height 43
Items ‘Left’

‘Center’
‘Right’

Left 5
Major Dimension 1
Name ‘rdbTableAlignment’
Radiobox Style wxRA_SPECIFY_ROWS
Selected Button 0
Top 80
Width 218
Type RadioBox
Caption ‘Table Background’
Height 43
Items ‘Use Colour’

‘Use Image’
Left 5
Major Dimension 1
Name ‘rdbTableBackground’
Radiobox Style wxRA_SPECIFY_ROWS
Selected Button 0
Top 126
Width 218
Type Panel
Height 20
Left 5
Name ‘pnlColor’
General Styles wxSIMPLE_BORDER
Top 174
Width 88
Type Edit
Height 19
Left 98
Name ‘edtImageSource’
Text ‘’
Top 174
Width 124

Type Button
Height 26
Label ‘Choose Colour’
Left 5
Name ‘btnChooseColour’
Top 201
Width 88
Type Button
Height 26
Label ‘Choose Image’
Left 134
Name ‘btnChooseImage’
Top 201
Width 88
Type StaticLine
Left 5
Length 217
Name ‘stlButtonSeparator’
Orientation wxLI_HORIZONTAL
Top 233
Type Button
Height 26
ID Name wxID_OK
Label ‘OK’
Left 5
Name ‘btnOK’
Top 241
Width 75
Type Button
Height 26
ID Name wxID_CANCEL
Label ‘Cancel’
Left 147
Name ‘btnCancel’
Top 241
Width 75
Type ColorDialog
Name ‘dlgColorChooser’
Type OpenFileDialog
Message ‘Choose an image file’
Name ‘dlgFileChooser’

The Create Table Dialog should look like this in the form designer.

Figure 9.130 – The Create Table Dialog in the form designer

Relax once more and and take a break before the final dialog. In the final section we are
going to add the controls to the Insert Image Dialog. This is slightly smaller than the last
dialog.

The Insert Image Dialog

This dialog allows you to select an image and set its properties. As before add the
controls as listed in the following table.

Type StaticText
Height 17
Label ‘Height’
Left 4
Name ‘txtHeight’
Top 6
Width 35
Type StaticText
Height 17
Label ‘Width’
Left 4
Name ‘txtWidth’
Top 38
Width 32
Type StaticText
Height 17
Label ‘Border’
Left 4

Name ‘txtBorder’
Top 67
Width 35
Type StaticText
Height 17
Label ‘Image Source’
Left 4
Name ‘txtImageSource’
Top 95
Width 70
Type StaticText
Height 17
Label ‘Alternative Text
Left 4
Name ‘txtAlternativeText’
Top 122
Width 78
Type SpinCtrl
Height 22
Left 48
Maximum Value 3000
Minimum Value 0
Name ‘spnHeight’
Top 6
Value 100
Width 63
Type SpinCtrl
Height 22
Left 48
Maximum Value 3000
Minimum Value 0
Name ‘spnWidth’
Top 38
Value 100
Width 63
Type SpinCtrl
Height 22
Left 48
Maximum Value 3000
Minimum Value 0
Name ‘spnBorder’
Top 67
Value 0
Width 63
Type StaticBitmap

Height 84
Left 120
Name ‘imgPreview’
Top 6
Width 102
Type Edit
Height 19
Left 85
Name ‘edtImageSource’
Text ‘’
Top 95
Width 83
Type Edit
Height 19
Left 85
Name ‘edtAlternativeText’
Text ‘’
Top 122
Width 136
Type Button
Height 21
Label ‘Browse’
Left 173
Name ‘btnBrowseForImage’
Top 95
Width 49
Type Button
Height 24
ID Name ‘wxID_OK’
Label ‘OK’
Left 13
Name ‘btnOK’
Top 157
Width 72
Type Button
Height 24
ID Name ‘wxID_CANCEL’
Label ‘Cancel’
Left 143
Name ‘btnCancel’
Top 157
Width 72
Type OpenFileDialog
Message ‘Choose an image file’
Extensions All Image Files|*.bmp;*.gif;*.jpg;*.jpeg|PNG files

(*.png)|*.png|GIF files (*.gif)|*.gif|JPG files
(*.jpg)|*.jpg|JPEG files (*.jpeg)|*.jpg

Name ‘dlgFileChooser’

That’s it! Finally you have reached the end of the design of the forms. The Insert Image
Dialog should look like the following image.

Figure 9.131 – The Insert Table Dialog in the form designer

Just to check that everything is all right compile and run the application. You will notice
that at the moment you cannot see the other dialogs you have created. In the next chapter
we will look at adding code to show the different dialogs. We will also add code to make
all those buttons and menus do something useful.

Advanced Users

WARNING: You are advised to back up any files before altering them. This means you

can go back and replace them if anything goes wrong.

I personally find the component palette to be a little awkward to work with. Either you
have to show all files and scroll up and down looking for the ones you want or you have
make a guess at which section houses which component. Wouldn’t it be nice it you could
decide what goes where, or have your own sections with your most used components?
Well the good news is that you can, even better news it that there are two ways to do it.

1. To do this you need to use notepad. Open it then select File|Open. In the Open

File dialog make sure the combo box labelled ‘File of Type’ is changed to read
‘All Files’. Now browse to where you installed wxDev-C++. The file you are
looking for is called ‘devcpp.palette’.

Figure 9.132 – Opening devcpp.palette

You will be greeted by the contents of a file like this:

[Palette]
Sizers=TWxBoxSizer;TWxStaticBoxSizer;TWxGridSizer;T WxFlexGridSizer;
Controls=TWxStaticText;TWxButton;TWxBitmapButton;TW xToggleButton;TWxEdit;
TWxMemo;TWxCheckBox;TWxChoice;TWxRadioButton;TWxCom boBox;TWxListBox;TWXLi
stCtrl;TWxTreeCtrl;TWxGauge;TWxScrollBar;TWxSpinBut ton;TWxstaticbox;TWxRa
dioBox;TWxDatePickerCtrl;TWxSlider;TWxStaticLine;TW xStaticBitmap;TWxStatu
sBar;TWxChecklistbox;TWxSpinCtrl;
Window=TWxPanel;TWxNoteBook;TWxNoteBookPage;TWxGrid ;TWxScrolledWindow;TWx
HtmlWindow;TWxSplitterWindow;
Toolbar=TWxToolBar;TWxToolButton;TWxSeparator;TWxEd it;TWxCheckBox;TWxRadi
oButton;TWxComboBox;TWxSpinCtrl;
Menu=TWxMenuBar;TWxPopupMenu;
Dialogs=TWxOpenFileDialog;TWxSaveFileDialog;TWxProg ressDialog;TWxColourDi
alog;TWxDirDialog;TWxFindReplaceDialog;TWxFontDialo g;TWxPageSetupDialog;T
WxPrintDialog;TWxMessageDialog;
System=TWxTimer;
[Version]
IniVersion=1

Each line contains one section on the palette. The start of the line before the ‘=’
sign is the section name. The rest of the line is the list of components in that

section. Notice that each component is separated by a semi colon. The other thing
to note is that each component name begins with a capital ‘T’.

To create a new section, choose a name. Add this to the file by putting a new line
in between ‘System’ and ‘[Version]’. Follow your name with an equals ‘=’ sign.
Then add the components you want in your section copy the names from those
already in the file and separate each with a semi colon. Also end the line with a
semi colon. For example

Favourites=TWxBoxSizer;TWxPanel;TWxEdit;TWxMemo;TWx MenuBar;TWxToolBar;TWx
ToolButton;TWxStatusBar;

Save the file and then restart wxDev-C++ you should find your new section in the
component palette.

2. The second method is to use the GUI tool Palette Manipulator available from the
Bonus download section of the project site.

The first thing to do after running the program is to open the devcpp.pallete file.
To do this go to File|Open. The following browse dialog will be displayed.
Browse to the Dev-Cpp folder.

Figure 9.133 – Browsing for the devcpp.pallete file

Open this file. The left-hand pane will be filled with the names of the available
palettes. Select any of these palettes and the centre pane will be filled with the

names of the components contained on this palette. The right-hand pane contains
the names of the components available to add to this palette.

Figure 9.134 – Palette Manipulator

To move components to or from a palette use the ‘Select’ buttons.

 Removes all components from the palette

Removes the selected component from the palette

Adds the selected component to the palette

Adds all components to the palette

To create a new palette enter the name in the bottom text box and click [Create
New Palette].

The save button creates a backup of the previous palette file and save this one.
The backup is confined to the last set of changes so if you have made an error
restore from the backup before trying again.

Restart wxDev-C++ to see the changes.

Chapter 10 – Making It Work With Code

Introduction

This chapter is designed to help you make your beautiful GUI do something more than
look nice. The only way to achieve this is by adding code. However it can be a problem
finding where to add the necessary code. With wxDev-C++ you find that there are even
certain places where your code will vanish. This chapter will help to guide you past such
pitfalls.

Where to add your code (or where did it go)

We will start with an experiment to experience the disappearing code problem. We will
follow this the reason why this happens. First we will start a new wxFrame project called
VanishingCode.

Start a new wxFrame project called ‘VanishingCode’.
Save it in a new folder called ‘VanishingCode’ within your project folder.
Accept the defaults for the frame and click [Create].
Turn to the tab that says ‘VanishingFrm.h’.
Look for the line that says ‘////Header Include Start ’.
After this line add the line ‘#include <wx/msgdlg.h> ’.
Now turn to the tab that says ‘VanishingFrm.cpp’.
Look for the line that says ‘////GUI Items Creation Start ’.
Add a line after this with this code ‘wxMessageBox(wxT("Hello
Everyone"),wxT("Doctor Nick says")); ’.
Press <F9> to compile and run the application.

The following message box should pop up before the frame appears.

Figure 10.1 – The messagebox that appears at the start of the application

Now to demonstrate the disappearing code problem

Switch to the tab labelled ‘VanishingCodeFrm.wxform’.
Select a button control from the palette and add to the form.
Press <F9> to compile and run the application.

This time the message box doesn’t appear, all that appears is a frame containing a giant
button. Look back in the two files you altered by hand, you will find that your code has
vanished. So why has it vanished?

The answer is because we placed it between the two lines of code starting with ‘//// ’.
The form designer uses these areas to add the code necessary to create the form, added
the required header files, add events, etc. The IDE will replace all the code between these
two lines each time it updates the file. So when we added the button the code was
updated and our changes were removed.

So the moral is never add code between two lines starting with ‘//// ’. Generally there is
a warning above these areas telling you not to add code there. However with all rules
there is an exception, this occurs in the .cpp file within the event table block within this
block is the lines ‘////Manual Code Start ’ and ‘////Manual Code End ’. This is the
one area where you should enter code between the two lines.

Responding to Events

The first thing we need to understand is the meaning of events. An event is something
that happens. For example in real life the phone ringing or someone knocking at your
door is an event. When an event happens you respond to it either you answer the phone or
the door, or you hide and pretend no one is home. In GUI programming an event is more
likely to be a button click, a window repainting, a timer going off and so on. Just like real
life you decide what to do when an event occurs; you can even ignore it like the man
knocking on your door.

So let’s look at how we can respond to events. We will need a new project to demonstrate
this.

Start a new wxFrame project.
Call it TheBigEvent and save it in a new folder with the same name.
Accept the defaults for the frame.
Drop an Edit control and a Button on the frame.
Name the Edit control ‘edtMessage’ and the Button ‘btnPushMe’.
Change the label of the button to ‘Push Me’.
Select the button and in the Property Inspector select the Events tab.

There are two events listed OnClick and OnUpdateUI. The one we are going to look at is
OnClick.

In the drop down box for the OnClick event choose <Add New Function>.

The IDE should take you to the newly generated event handler. Which will look like this.

/*
 * btnPushMeClick

 */
void TheBigEventFrm::btnPushMeClick(wxCommandEvent& eve nt)
{
 // insert your code here
}

From our knowledge of C++ programming we can see that the generated event handler is
a member function of the frame. It takes a single parameter which is of the type
wxCommandEvent. What we cannot see here is that the wxCommandEvent is one of
several classes that derive from wxEvent. For many programs the parameter can be
ignored since all we need to know about the event is that it happened, for other programs
we need to know more information such as who sent the event. This information is held
in the wxEvent derived argument.

We will not go much deeper into the mysteries of wxWidgets event handling than this.
Instead we will look at responding to events. The IDE has very kindly provided us with a
prompt on where to insert our code // insert your code here . We will accept this
invitation.

Replace the line // insert your code here with
edtMessage->SetValue(wxT("The big event just happen ed"));

Press <F9> to compile and run the program.
Try clicking on the button.

The result of running the program and pressing the button should look like this.

Figure 10.2 – The Big Event program after pressing the button

But how does the program know which function it should execute when the button is
pressed? The answer lies near the top of the frames .cpp file in the event table. After you
added the new OnClick function the table will look like this.

BEGIN_EVENT_TABLE(TheBigEventFrm,wxFrame)
 ////Manual Code Start
 ////Manual Code End

 EVT_CLOSE(TheBigEventFrm::OnClose)
 EVT_BUTTON(ID_BTNPUSHME,TheBigEventFrm::btnPushMeC lick)
END_EVENT_TABLE()

There are two events listed here EVT_CLOSE and EVT_BUTTON. The fist event occurs when
you try to close the frame for example by clicking on the close button. As you can see

this calls the function TheBigEventFrm::OnClose . The second one which we just added
has two parts the first part ID_BTNPUSHME is the ID Name of the component that is linked
to the function which follows it TheBigEventFrm::btnPushMeClick . So when the
button is clicked the application searches the event table for event linked to the buttons
ID Name. When it finds an event of the correct type in this case EVT_BUTTON it calls the
linked function.

This is a simple example of handling events, but in most cases it is all you will need to
do. However OnClick is only one of many types of event. We will next look at a list of
events and when they occur.

Types of Event

The wxDev-C++ IDE names events after the action that causes them such as OnClick.
However if you look through the wxWidgets documentation you wont find information
about an event called OnClick since wxWidgets uses a different method to name events
so in the documentation you will find EVT_BUTTON.

Figure 10.3 – The Button OnClick event in wxDev-C++

Figure 10.4 – The actual event in the wxWidgets documentation

Instead of listing every component and the events wxDev-C++ allows you to alter I have
created a list in the appendix that lists the names of the events, an example control that
uses this event and when the event occurs. Following the description of when the event
occurs is name of the event for you to look up in the wxWidgets help file.

Having taken a look at the event handling mechanism of wxDev-C++ and wxWidgets let
us put this into practice with our sample application. In the next section we are going to
start adding code in order to get the whole thing up and running.

Sample Application Part 3 – The code

We now look at the most important part of the sample application. At present our
program does nothing except start, there is no splash screen, no way to open dialogs and
the buttons do nothing. In order to make it all work we need to write some code.

The Application Code

First we are going to start by altering the application code file to enable us to display a
splash screen and to show start up tips. The file we need to edit is called
HTMLEditApp.cpp. It present it looks like this:

HTMLEditApp.cpp

1 #include "HTMLEditApp.h"
2 #include "HTMLEditFrm.h"
3
4 IMPLEMENT_APP(HTMLEditFrmApp)
5
6 bool HTMLEditFrmApp::OnInit()
7 {
8 HTMLEditFrm* frame = new HTMLEditFrm(NULL);
9 SetTopWindow(frame);
10 frame->Show();
11 return true;
12 }
13
14 int HTMLEditFrmApp::OnExit()
15 {
16 return 0;
17 }

At the start of the file two files are included the header file for the declaration of the
application class which derives from wxApp. This class is where the program starts. The
other included file is the declaration of our main frame. This is needed so that the
application class can create and display our frame.

When the application class starts it runs the function OnInit() this function then creates
our frame and shows it. Since a splash screen is shown before the main screen we need to
add the necessary code before line 8. We also need tell the application where to find our
splash screen. So under line 2 add this line

#include “SplashFrm.h”

Then add these 3 lines before line 8.

SplashFrm* SplashFrame = new SplashFrm(NULL);
SetTopWindow(SplashFrame);
SplashFrame->DisplayFrame();

At present we can’t compile the program since our splash frame doesn’t have a function
called DisplayFrame() , but we are going to implement this soon. Before we look at doing
this we need add a couple more pieces of code.

Firstly before the code we just added add this line.

wxInitAllImageHandlers();

Since we will be working with images we need to initialise the image handlers this allows
us to load and save different image types.

Finally we want to add the ability to show tips when the program starts. This has to be
done after the frame has been created and shown. So before the line return true; in the
function OnInit() add the following lines.

if (/*Normally check here to see if tips should shown*/ 1)
{
 wxTipProvider *tipProvider = wxCreateFileTipPro vider("tips.txt" , 0);
 wxShowTip(frame, tipProvider);
 delete tipProvider;
}

Within the if statement a proper application would check to see if the user wants to
show tips or not. We put a 1 in here to make the check always return true. The application
then looks for a text file called tips.txt in the same location as the application. Without
this file the user will be shown an error message that the tips file cannot be found. Create
a text file with the following contents.

tips.txt

Welcome to Simple HTML Editor.
This is a sample application written in wxWidgets and wxDev-C++.
It accompanies the book Programming with wxDev-C++.

Save this file in the same directory as the executable file.

In order to use the wxTipProvider you need to add the following include file to the list of
include files.

#include <wx/tipdlg.h>

Next we are going to add the display function to the splash screen. After this we will be
able to compile and run the application.

The Splash Screen

We need to edit two file to enable us to make the splash screen work as we wish. The first
file is SplashFrm.h. I will not display all the contents of this file, but near the end you will
find this function declaration void CreateGUIControls(); . After this line add the
following code.

SplashFrm.h

 void SetWindowShape();
public:
 void DisplayFrame();

Next we need to provide the code to use these two functions, we will do this in the file
SplashFrm.cpp.

The first line of code we need to add is in the function void
SplashFrm::CreateGUIControls() . We need to add two lines after the auto
generated code so look for the line

////GUI Items Creation End

This is around line 60. After this line add the following code.

SetSize(wxSize(bmpSplashImage->GetBitmap().GetWidth (), bmpSplashImage-
>GetBitmap().GetHeight()));
SetWindowShape();

The first line makes sure our frame is set to the same size as the bitmap we are going to
display. The second calls our function SetWindowShape() . We are going to add the code
for this function after the OnClose function around about line 69.

SetWindowShape()

void SplashFrm::SetWindowShape()
{
 //Convert image to a wxImage so that we can access pixel values
 wxImage TempImage = bmpSplashImage->GetBitmap() .ConvertToImage();
 //Create region using top left pixel as transparent colour
 wxRegion region(bmpSplashImage->GetBitmap(),
wxColour(TempImage.GetRed(0, 0),TempImage.GetGreen(0, 0),TempImage.GetBlue(0, 0)));
 //Set the window shape using new region
 SetShape(region);
}

I have added comments to explain what each line does. The whole function basically cuts
out the splash screen frame to the same shape as the outline of the image we are using on
the splash screen. We now need to add the code for the DisplayFrame() function. We will
add this after the last function.

DisplayFrame()

void SplashFrm::DisplayFrame()
{
 int i = 0;
 Show(true);
 for(i = 0; i < 250; i+= 5)
 {
 SetTransparent(i);
 Update();
 wxMilliSleep(15); //Fix by Fabian Wey
 }
 wxSleep(2);
 for(i = 255 ; i > 0; i-= 5)
 {
 SetTransparent(i);

 Update();
 wxMilliSleep(15); //Fix by Fabian Wey
 }
 Destroy();
}

This function first of all displays the frame. Then enters a loop which alters the frames
transparency causing it to fade in. Then it pauses using wxSleep() , before using another
loop to fade back out again. Finally it destroys itself.

Now we finally have a program that does something interesting. So let us have a look at
what we have achieved.

 Press F9 to compile and run.

The first thing you should see is the splash screen, this is shaped to the letters on the
image. After this fades in and out the frame will display followed by the tip window. If
you have created the tips.txt file in the correct place you should see this.

Figure 10.3 – The application displaying a tip window

Next we will look at coding the various dialogs before using them in our program.

The Dialogs

The first dialog we are going to look at is the hyperlink dialog. The reason for this is that
it is the simplest. One of the first problems that many users come across is that wxDev-
C++ creates the various components on a frame or dialog as private. This means that you
cannot directly access members of the dialog from another frame such as your main
frame. This means we are going to have to write accessor functions. We will start in
InsertHyperlinkDlg.h.

We need a get/set method for the combobox on the dialog, so that we can alter and
retrieve its contents from our main frame. Look for the line void

CreateGUIControls(); this should be around line 77. After this line add the
following code.

InsertHyperlinkDlg.h

public:
 const wxString GetHyperlink(){ return cmbHyperLink->GetValue();};
 void SetHyperlinks(const wxArrayString AnchorArray){cmbHyperLink-
>Append(AnchorArray);};

We create these as public so that we can access them the first function returns the
currently selected item in the hyperlink combobox. The second function takes an array of
wxStrings to set the choices allowed by the combobox.

We will now look at coding the insert image dialog. We again need to add code to the
header file after the line void CreateGUIControls(); this is around line 98.

InsertImageDlg.h

public:
 const int GetImageWidth(){ return spnWidth->GetValue();};
 const int GetImageHeight(){ return spnHeight->GetValue();};
 const int GetBorderWidth(){ return spnBorder->GetValue();};
 const wxString edtImageSource(){ return txtImageSource->GetValue();};
 const wxString edtAlternativeText(){ return txtAlternativeText->GetValue();};

We only want to retrieve values from this dialog so all the functions simply return values
from the various controls. However we also need add code for the operation of the button
btnBrowseForImage. To do this

 Change tabs to the InsertImageDlg.wxform tab.
 Select the btnBrowseForImage
 In the Property Inspector change to the Events tab.
 In the OnClick combobox choose <Add New Function> from the choices.
 You should automatically be switched the the new skeleton function.
 After the line // insert your code here add the following code.

btnBrowseForImageClick()

 if(WxOpenFileDialog1->ShowModal())
 {
 wxFileName TempFilename(dlgFileChooser->Get Path());
 //Extract the extension part of the file name
 wxString TempExtensionString(TempFilename.G etExt());
 wxBitmap TempBitmap;
 //Use the extracted extension to decide what file t ype to load
 if(TempExtensionString.CmpNoCase(wxT("PNG")) == 0)
 {
 TempBitmap.LoadFile(dlgFileChooser->Get Path(),wxBITMAP_TYPE_PNG);
 }
 else if((TempExtensionString.CmpNoCase(wxT("JPG")) == 0) ||
(TempExtensionString.CmpNoCase(wxT("JPEG")) == 0))
 {
 TempBitmap.LoadFile(dlgFileChooser->Get Path(),wxBITMAP_TYPE_JPEG);
 }
 else if(TempExtensionString.CmpNoCase(wxT("GIF")) == 0)
 {
 TempBitmap.LoadFile(dlgFileChooser->Get Path(),wxBITMAP_TYPE_GIF);
 }
 //Fill the controls with relevant values
 spnHeight->SetValue(TempBitmap.GetHeight()) ;
 spnWidth->SetValue(TempBitmap.GetWidth());
 edtImageSource->SetValue(dlgFileChooser->Ge tPath());
 //Display a preview of the image chosen
 imgPreview->SetBitmap(TempBitmap);
 }

We also need to add a header file to allow us to use the wxFileName class so after the
line ////Header Include End (about line 16) add this line.

#include <wx/filename.h>

In this function we use the class wxFileName which allows us to divide a filename into
different parts, we use it to easily retrieve the file extension. Next we use the extension
part to determine what type of image to load, this is necessary for the second part of the
wxBitmap LoadFile() function. Once the image is loaded we fill the controls with values
such as image size and location. Finally we show a preview of the image.

Our final dialog is the create table dialog. This is the most complex of the dialogs and we
will start with the CreateTableDlg.h file. Once again we need to write accessor function
as well as a couple of button click event handlers. As before add the following code after
the CreateGUIControls() function which is around line 118.

CreateTableDlg.h

public:
 const int GetRows(){ return spnRows->GetValue();};
 const int GetCols(){ return spnCols->GetValue();};
 const int GetBorderSize(){ return spnBorder->GetValue();};
 const int GetCellSpacing(){ return spnCellSpacing->GetValue();};
 const int GetCellPadding(){ return spnCellPadding->GetValue();};
 const int GetTableWidth(){ return spnTableWidth->GetValue();};

 const wxString GetTableAlignment(){ return rdbTableAlignment-
>GetStringSelection();};
 const bool IsColourSelected(){ return rdbTableBackground->GetSelection() ==
0?true: false;};
 const bool IsImageSelected(){ return rdbTableBackground->GetSelection() ==
1?true: false;};
 const wxString GetColour(){ return pnlColour-
>GetBackgroundColour().GetAsString(wxC2S_HTML_SYNTA X);};
 const wxString GetImage(){ return edtImageSource->GetValue();};

Of some interest here are the IsColourSelected and IsImageSelected functions which use
the shorthand if statement to return a true or false Boolean value. The GetColour function
could also use some explaining, it gets the background colour of the panel which is
returned as a wxColour, we then call the wxColour’s function GetAsString which we can
ask to return the string in HTML syntax which is what we need for web pages.

Now we need to turn to the CreateTableDlg.wxform tab. Select the button
btnChooseColour and in the events section create a new OnClick event. Add the
following code after the // insert your code here line.

btnChooseColourClick

if(dlgColorChooser->ShowModal() == wxID_OK)
{
 //Set the panel colour to match the value held by t he colour dialog
 pnlColor->SetBackgroundColour(dlgColorChooser-> GetColourData().GetColour());
 //Refresh the panel to show the new colour
 pnlColor->Refresh();
 //Set radio selection to use colour
 rdbTableBackground->SetSelection(0);
}

We will repeat the above procedure for the btnChooseImage button. In the newly created
OnClick function add the following code.

btnChooseImageClick

if(dlgFileChooser->ShowModal() == wxID_OK)
{
 edtImageSource->SetValue(dlgFileChooser->GetPat h());
 //Set radio selection to use image
 rdbTableBackground->SetSelection(1);
}

Time to relax and have a drink or your choice. After all that coding we have several
dialogs that do nothing. Time to connect them to our main frame. Before continuing press
F9 to check that everything compiles OK. If there are any errors correct them before
continuing.

The Main Frame

Okay get your fingers ready for a real workout in this section. We will mostly be creating
OnClick event function for buttons and menu items, but we will also be coding some
helper functions. After all if a button and menu does the same thing why code it twice
why not just write one function and get the button and the menu to both call it.

We will start with the helper functions, in the HTMLEditFrm.h after the
CreateGUIControls function (about line 164) add the following function declarations.

HTMLEditFrm.h

public:
 void UpdateHTML();
 void OpenFile();
 void SaveFile();
 void NewFile();
 bool DoFileSaveCheck();
 void WrapTextInTag(const wxString& TagType);
 void InsertText(const wxString& Text);

We also need to add a wxString variable to hold the name of our currently open file, this
will be used to add the name to the list of most recently used (MRU) files. Around line 98
after the line ////GUI Control Declaration End add this line.

wxString MRUFile;

We now need to add the function definitions. These go in the HTMLEditFrm.cpp change
to this tab and scroll to the bottom of this file then add the following code.

HTMLEditFrm.cpp

void HTMLEditFrm::UpdateHTML()
{
 //Update and refresh the text on the HTML preview w indows
 htmCombinedPreview->SetPage(mmoTextEditor->GetV alue());
 htmPreview->SetPage(mmoTextEditor->GetValue());
 //Something has changed so mark the text as altered in the memo
 mmoTextEditor->MarkDirty();
}

void HTMLEditFrm::OpenFile()
{
 // Check if we need to save current file before ope ning new
 if(DoFileSaveCheck())
 {
 //Show open file dialog
 if(dlgFileOpen->ShowModal() != wxID_CANCEL)
 {
 //If we have a file name add it to the most recentl y used menu
 if(!MRUFile.IsEmpty())
 {
 m_fileHistory->AddFileToHistory(MRUF ile);
 }
 //Load in the file
 mmoTextEditor->LoadFile(dlgFileOpen->Ge tPath());
 //Save the file path in the most recently used file s

 MRUFile = dlgFileOpen->GetPath();
 //Update HTML preview
 UpdateHTML();
 //And reset text editor
 mmoTextEditor->DiscardEdits();
 }
 }
}

void HTMLEditFrm::SaveFile()
{
 //Set default filename and show save dialog
 dlgFileSave->SetFilename(MRUFile);
 if(dlgFileSave->ShowModal() != wxID_CANCEL)
 {
 //Save file and add filename to most recently used files
 mmoTextEditor->SaveFile(dlgFileSave->GetPat h());
 MRUFile = dlgFileSave->GetPath();
 m_fileHistory->AddFileToHistory(dlgFileSave ->GetPath());
 }
}

void HTMLEditFrm::NewFile()
{
 //Check if we need to save the file
 if(DoFileSaveCheck())
 {
 //Clear reset text and HTML displays
 mmoTextEditor->Clear();
 UpdateHTML();
 mmoTextEditor->DiscardEdits();
 }

}

bool HTMLEditFrm::DoFileSaveCheck()
{
 bool RetVal = true;
 //If we have unsaved changes in the text editor
 if(mmoTextEditor->IsModified())
 {
 //Check if we should save the changes
 if(dlgSaveChanges->ShowModal() == wxID_YES)
 {
 //Set a default filename and save file
 dlgFileSave->SetFilename(MRUFile);
 if(dlgFileSave->ShowModal() != wxID_CANCEL)
 {
 mmoTextEditor->SaveFile(dlgFileSave ->GetPath());
 MRUFile = dlgFileSave->GetPath();
 //Add to list of most recently used files
 m_fileHistory->AddFileToHistory(MRU File);
 }
 else
 RetVal = false;
 }
 }
 else
 {
 if(!MRUFile.IsEmpty())
 {
 //Add to list of most recently used files
 m_fileHistory->AddFileToHistory(MRUFile);

 }
 }

 return RetVal;
}

void HTMLEditFrm::WrapTextInTag(const wxString& TagType)
{
 //Create variables to hold position of currently se lected text
 long PosFrom = 0, PosTo = 0;
 //Get position of currently selected text
 mmoTextEditor->GetSelection(&PosFrom,&PosTo);
 wxString TempString;
 //Add tag start to temp string
 TempString << wxT("<") << TagType << wxT(">");
 //Add currently selected text to temp string
 TempString << mmoTextEditor->GetStringSelection ();
 //Add tag end to temp string
 TempString << wxT("</") << TagType << wxT(">");
 //Replace currently selected text with contents of temp string
 mmoTextEditor->Replace(PosFrom,PosTo,TempString);
 //And update controls
 UpdateHTML();
}

void HTMLEditFrm::InsertText(const wxString& Text)
{
 //Create variables to hold position of cursor
 long PosFrom = 0, PosTo = 0;
 //Get current selection
 mmoTextEditor->GetSelection(&PosFrom,&PosTo);
 //And replace with the text to insert
 mmoTextEditor->Replace(PosFrom,PosTo,Text);
 //Then update controls
 UpdateHTML();
}

The idea of helper function like these are not only because I am lazy and don’t like to
type the same code several times, but also because it makes it easier to change code later,
If I want to change the way I load a file I don’t want to hunt for the load file button press
event code, then the load file menu event code and try to keep them the same. I want to
look for and alter one function only.

At this point we want to be sure that everything is still OK. So press F9 to compile and
run the program. If there are any errors now is the time to fix them before we move on to
the more exciting task of connecting up the controls to code.

Making it all work

We will start with showing the about dialog. We want to do this when the Help->About
menu item is selected. To do this

Change to the HTMLEditFrm.wxform tab.
Select the mnuMainBar control
On the Properties tab select Edit MenuItems
Expand the &Help option and select the &About option

Click the [Edit] button.
Next the OnMenu combobox click the [Create] button.
Change the function name to MnuAboutClick.
Click [OK].
Click [Apply] then [OK].
Then change to HTMLEditFrm.cpp and scroll to the bottom to our new function.
Add the following code after the // insert your code here line.

MnuAboutClick

AboutBoxDlg TempAboutBoxDlg(this);
TempAboutBoxDlg.ShowModal();

Now follow the same procedure for the other menu items

MnuNewClick

NewFile();

MnuOpenClick

OpenFile();

MnuSaveClick

SaveFile();

MnuPageSetupClick

dlgPrint->PageSetup();

MnuPrintPreviewClick

dlgPrint->PreviewText(mmoTextEditor->GetValue());

MnuPrintClick

dlgPrint->PrintText(mmoTextEditor->GetValue());

MnuExitClick

Close();

MnuUndoClick

mmoTextEditor->Undo();
UpdateHTML();

MnuRedoClick

mmoTextEditor->Redo();
UpdateHTML();

MnuCutClick

mmoTextEditor->Cut();
UpdateHTML();

MnuCopyClick

mmoTextEditor->Copy();

MnuPasteClick

mmoTextEditor->Paste();
UpdateHTML();

That is it for the menu code, as you can see the controls provided by wxWidgets do most
of the hard work for us. We only need to call the functions they provide such as cut,
paste, etc.

Since we are now starting to use the dialogs we created earlier we need to tell the
compiler where to find the code. Near the top of the HTMLEditFrm.cpp file under the
line ////Header Include End which is around line 46 add the following list of include
files.

#include "InsertHyperlinkDlg.h"
#include "InsertImageDlg.h"
#include "CreateTableDlg.h"
#include "AboutBoxDlg.h"

Now to check if your hard work has been successful. Press <F9> to compile and run the
application. If there any compilation errors now is the time to fix them. Try using the
different menus and see the results.

Next we are going to look at the main toolbar. For the first seven buttons I am going to
leave you to create the OnClick functions and write the code (Hint the code is the same as
for the menu items which have the same purpose). We are now going to look at the
cmbHeadings combobox. The event we need to write the code for is the OnUpdated
event. This occurs when the user makes a new selection. The code is as follows

cmbHeadingsUpdated

//Create a temporary string and send it the H tag p lus a number derived from
//the users selection, add 1 since the combo conten ts are numbered from zero
WrapTextInTag(wxString() << wxT("H") << (cmbHeadings->GetCurrentSelection() +
1));

Thanks to our helper function WrapTextInTag we can achieve a lot in one line of code.
We are going to make use of the InsertText helper function for the alignment buttons.
The OnClick function for each of these is as follows.

btnAlignLeftClick

InsertText(wxT(" ALIGN=\"left\""));

btnAlignCenterClick

InsertText(wxT(" ALIGN=\"center\""));

btnAlignRightClick

InsertText(wxT(" ALIGN=\"right\""));

Once again the InsertText function reduces the amount of code we need. The backslashes
are needed to escape the quote signs since we need to display them as part of the
alignment property.

We are now finished with the top toolbar, as before press <F9> to compile and run the
application and check that there are no coding errors. Once you are satisfied we are going
to move on to the side toolbar.

The first three buttons are fairly simple and work fairly like the header combobox. We
will create them next. The code for the three of them follows.

btnEmboldenTextClick

WrapTextInTag(wxT("B"));

btnItaliciseTextClick

WrapTextInTag(wxT("I"));

btnUnderlineTextClick

I will leave this one for you it is the same as the other two the only different is that the tag
letter is “U”. The next button is the font button, this is much more complex since we need
to retrieve to values from the font dialog. Create a new OnClick function and add the
following code.

btnChangeFontClick

if(dlgFont->ShowModal())
{
 wxFontData FontData = dlgFont->GetFontData();

 wxFont Font = FontData.GetChosenFont();
 long PosFrom = 0, PosTo = 0;
 mmoTextEditor->GetSelection(&PosFrom,&PosTo);
 wxString TempString;
 TempString = wxT("<FONT COLOR=\"");
 TempString << FontData.GetColour().GetAsString(wxC2S_HTML_SYNTAX);
 TempString << wxT("\"") << wxT(" FACE=\"");
 TempString << Font.GetFaceName() << wxT("\"");
 TempString << wxT(" POINT-SIZE=\"");
 TempString << Font.GetPointSize() << wxT("\">");
 TempString += mmoTextEditor->GetStringSelection ();
 TempString += wxT("");
 mmoTextEditor->Replace(PosFrom,PosTo,TempString);
 UpdateHTML();
}

The next button creates a horizontal line the code follows.

btnInsertHorizontalLineClick

InsertText(wxT("<HR>"));

The next button creates anchor points. The user is prompted for the name of the anchor
point, this is used to build the anchor point. The anchor point is added to a list of anchor
points for use in the insert hypertext dialog. The code for this function follows.

btnCreateAnchorPointClick

//Create variables to hold position of selected tex t
long PosFrom = 0, PosTo = 0;
//Get the text selection
mmoTextEditor->GetSelection(&PosFrom,&PosTo);
wxString TempString , TempAnchorString;
//Get name of anchor point from the user
TempAnchorString << wxGetTextFromUser(wxT("Enter a name for your anchor
point"),wxT("Anchor point creator"));
//Create temporary string to build anchor point
TempString << wxT("<A NAME=\"") << TempAnchorString << wxT("\">");
TempString << mmoTextEditor->GetStringSelection() < < wxT("");
//Write the anchor point
mmoTextEditor->Replace(PosFrom,PosTo,TempString);
//Update the HTML controls
UpdateHTML();
//Create an anchor point and add to list of anchor points
TempAnchorString.Prepend(wxT("#"));
AnchorArray.Add(TempAnchorString);

This function requires that we add another variable AnchorArray to the variables held by
the frame. Under the wxString variable MRUFile in the HTMLEditFrm.h file add the
line.

wxArrayString AnchorArray;

Tied in with the create anchor button is the create hyperlink button which we shall look at
next. This uses the array of anchor points to populate the combobox on the
InsertHyperlinkDialog. The code for this button follows.

btnInsertHyperlink

//Create a new InsertHyperlinkDialog and populate w ith anchor points
InsertHyperlinkDlg TempInsertHyperlinkDlg(this);
TempInsertHyperlinkDlg.SetHyperlinks(AnchorArray);
//Show the dialog
if(TempInsertHyperlinkDlg.ShowModal() == wxID_OK)
{
 long PosFrom = 0, PosTo = 0;
 mmoTextEditor->GetSelection(&PosFrom,&PosTo);
 //Create the hyperlink string
 wxString TempString;
 TempString << wxT("<A HREF=\"");
 TempString << TempInsertHyperlinkDlg.GetHyperli nk();
 TempString << wxT("\">");
 TempString << mmoTextEditor->GetStringSelection ();
 TempString << wxT("");
 //Insert the hyperlink string
 mmoTextEditor->Replace(PosFrom,PosTo,TempString);
 //And update the HTML controls
 UpdateHTML();
}

The next button is the insert table button, once again this will use one of our custom
dialogs.

btnInsertTable

CreateTableDlg TempCreateTableDialog(this);
if(TempCreateTableDialog.ShowModal() == wxID_OK)
{
 long PosFrom = 0, PosTo = 0;
 mmoTextEditor->GetSelection(&PosFrom,&PosTo);
 wxString TempString;
 //Start to create the table string
 TempString << wxT("<TABLE ALIGN=\"");
 TempString << TempCreateTableDialog.GetTableAli gnment();
 //Check if user wishs to use a background image or colour
 if(TempCreateTableDialog.IsImageSelected())
 {
 TempString << wxT("\" BACKGROUND=\"");
 TempString << TempCreateTableDialog.GetI mage();
 }
 else if(TempCreateTableDialog.IsColourSelected())
 {
 TempString << wxT("\" BGCOLOR=\"");
 TempString << TempCreateTableDialog.GetC olour();
 }
 //Start to add the table attributes
 TempString << wxT("\" BORDER=\"");
 TempString << TempCreateTableDialog.GetBorderSi ze();
 TempString << wxT("\" CELLPADDING=\"");
 TempString << TempCreateTableDialog.GetCellPadd ing();
 TempString << wxT("\" CELLSPACING=\"");
 TempString << TempCreateTableDialog.GetCellSpac ing();

 TempString << wxT("\" WIDTH=\"");
 TempString << TempCreateTableDialog.GetCellSpac ing();
 TempString << wxT("\">\n");
 //Loop through to create all the table rows
 for(int i = TempCreateTableDialog.GetRows();i>= 0;i--)
 {
 TempString << wxT("<TR>\n");
 //Loop through to create all the table columns
 for(int j = TempCreateTableDialog.GetCols();j>= 0;j--)
 {
 TempString << wxT("<TD>\n");
 TempString << wxT("</TD>\n");
 }
 TempString << wxT("</TR>\n");
 }
 //End the table
 TempString += wxT("</TABLE>\n");
 //Insert the table string
 mmoTextEditor->Replace(PosFrom,PosTo,TempStrin g);
 //Update the HTML controls
 UpdateHTML();
}

We now only have one button left to write code for the insert image button. Follow the
usual procedure and add the following code to the OnClick function.

btnInsertImageClick

//Show insert image dialog
InsertImageDlg TempInsertImageDialog(this);
if(TempInsertImageDialog.ShowModal() == wxID_OK)
{
 //Create string to hold image details
 wxString TempString = wxT("<IMG");
 TempString << wxT(" BORDER=\"");
 TempString << TempInsertImageDialog.GetBorderWi dth();
 TempString << wxT("\" HEIGHT=\"");
 TempString << TempInsertImageDialog.GetImageHei ght();
 TempString << wxT("\" WIDTH=\"");
 TempString << TempInsertImageDialog.GetImageWid th();
 TempString << wxT("\" SRC=\"");
 TempString << TempInsertImageDialog.GetImageSou rce();
 TempString << wxT("\" TITLE=\"");
 TempString << TempInsertImageDialog.GetAlternat iveText();
 TempString << wxT("\">");
 //Add to the text editor
 mmoTextEditor->WriteText(TempString);
 //Update the HTML controls
 UpdateHTML();
}

Finally we need to make a minor change to the AboutBoxDlg.cpp file. At present if we
click on the hyperlinks on the about box we are taken to the wxDev-C++ website. This is
not what we want so look for the line ////GUI Items Creation End (around line 80) and
add the two following lines of code.

hypProjectSite->SetURL(wxT("http://wxdevcpp-book.sourceforge.net"));
hypIconsFrom->SetURL(wxT("http://tango.freedesktop.org/Tango_Desktop_Project "));

And that is it for the controls. However at the moment the application still has a few
major flaws. Firstly the HTML does not update as the user types, secondly when the user
presses enter the HTML tag
 should be added to the text editor, thirdly there are no
prompts to save the current file when the user exits the application and finally the most
recently used file menu entry does nothing. We will fix this next.

Tidying up

The first problem is easy to solve we already have a function UpdateHTML() we just
need to call it in the correct place. The function we need is called OnUpdated and is part
of the mmoTextEditor text control. Create a new function and add the line

mmoTextEditorUpdated

UpdateHTML();

This has now created a new problem, try compiling and running the application and you
may find that it crashes after the splash screen shows. The reason for this is that when the
text control is created it sends an update event, our UpdateHTML code then tries to
update the HTML controls which are not yet created.

We now need to modify the UpdateHTML function. Modify it to look like the following.

UpdateHTML()

//Check the GUI controls have been created before c ontinuing
if(SetupComplete)
{
 //Update and refresh the text on the HTML preview w indows
 htmCombinedPreview->SetPage(mmoTextEditor->GetV alue());
 htmPreview->SetPage(mmoTextEditor->GetValue());
 //Something has changed so mark the text as altered in the memo
 mmoTextEditor->MarkDirty();
}

We now need to create the variable SetupComplete and alter it in the correct place. We
will create it in the HTMLEditfrm.h file. This will go after the line ////GUI Control

Declaration End and looks like this.

bool SetupComplete;

We now need to make an alteration in the function HTMLEditFrm::CreateGUIControls()
that the IDE has created for us in the file HTMLEditFrm.cpp. Alter the function to look
like the following.

SetupComplete = false;
CreateGUIControls();
SetupComplete = true;

Now we are ready to continue. This is a good example of hard to find bugs that arise from
seemingly safe code. After all we only called a function that we have called many times
before. This is where a debugger is extremely helpful as the backtrace can show you
exactly where the program crashed.

The second problem requires us to create another event handler for the same control. This
time we need to modify the OnEnter event. Create a new event and add the following
code

mmoTextEditorEnter

mmoTextEditor->WriteText(wxT("
"));

Next we need to prompt the user to save the file when they close the program if the file
has changed since they last saved it. To do this we need to modify the OnClose function
that the IDE created for us automatically. At the moment it only contains one line of code
Destroy(); We need to alter it to look like this.

//Save the most recently used files
m_fileConfig->SetPath(wxT("/RecentFiles"));
m_fileHistory->Save(*m_fileConfig);
m_fileConfig->SetPath(wxT(".."));

//Check if we can veto this event, we can't if oper ating system says no
if(event.CanVeto())
{
 //Check if we have any unsaved code
 if(mmoTextEditor->IsModified())
 {
 //Check if the user actually wants to save changes
 if(dlgSaveChanges->ShowModal() == wxID_YES)
 {
 //Set default filename
 dlgFileSave->SetFilename(MRUFile);
 //Show the save file dialog
 if(dlgFileSave->ShowModal() != wxID_CANCEL)
 {
 mmoTextEditor->SaveFile(dlgFileSav e->GetPath());
 Destroy();
 }
 }
 else
 Destroy();
 }
 else
 Destroy();
}
else
 Destroy();

The final problem is a bit more tricky we need to create our own event handler and add it
manually. The function declaration needs to be added in HTMLEditFrm.h just before the
end of class }; line which is around line 212. Add the following line

void OnMRUFile(wxCommandEvent & event);

We then need to write the function definition we will add this at the end of the file
HTMLEditFrm.cpp. Add the following function.

void HTMLEditFrm::OnMRUFile(wxCommandEvent & event)
{
 //See if we need to save the current contents of th e text editor
 if(DoFileSaveCheck())
 {
 //Get the file name using the event ID value
 MRUFile = m_fileHistory->GetHistoryFile(eve nt.GetId() - wxID_FILE1);
 //Load the file held in the variable MRUFile
 mmoTextEditor->LoadFile(MRUFile);
 //Update the HTML controls
 UpdateHTML();
 //Mark the text editor as unchanged
 mmoTextEditor->DiscardEdits();
 }
}

Finally we need to connect this event handler to the event mechanism. We want to catch a
range of events IDs since each MRU will send a different ID. We will add the code near
the top of the HTMLEditFrm.cpp file after the line ////Manual Code Start which is around
line 59. Add the following line

EVT_MENU_RANGE(wxID_FILE1, wxID_FILE9, HTMLEditFrm: :OnMRUFile)

This connects our event handler to a range of menu event IDs numbering from
wxID_FILE1 to wxID_FILE9.

That is it we are done try pressing F9 to try out the completed editor.

Figure 10.3 – The editor in action

This chapter has shown us how to add code to our GUI’s in order to make them work.
The following chapter is one we have referred to already and deals with making our
application look and behave in a professional manner. Many of the points covered by this
chapter have already been incorporated in our application. However it contains a few
pointers to other improvements that could be incorporated.

Chapter 11 – Guidelines for Professional Looking Pr ograms

Introduction

This chapter has very little to do with wxDev-C++ and more to do with programming in
general. It is one thing to write a program, it is another to make it act and look
professional. This applies the source code as much as to the look of the GUI. The GUI is
important for your end users, the source code is important for you and other maintainers
of your code.

This chapter will touch on many of the areas that can improve your programs and make
your source code much nicer to work with and maintain.

Naming Conventions

There are almost as many different naming conventions are there are programmers and
debates about the best convention can become quite heated. Basically a naming
convention means to give your variables meaningful names that help improve the
readability of your code. The convention you choose to use may be dictated by your
project specification, or it may be one you have developed by yourself. There is no set
right way, but there are definite wrong ways.

1. Choose a convention and stick to it throughout your coding.

For example you may choose to start all integer variables with int and floats
with flt.

Right Wrong

int intNumberOfVegetables;
int intNumberOfCustomers;
float fltTotalCost;
float fltTempCost;

int intVeg;
int C;
float ftot;
float cst;

As you can see the first column is easier to understand you can see at a glance
what each variable type is wherever it appears this makes it harder for
example to accidentally assign a float to an int.

The second column shows code that would be more difficult to understand.
For one thing some variable show their type and other don’t. It is also harder
to understand because of the following rule.

2. Give each variable a meaningful name.

In the table above the first column shows variable that have been given names
that explain their purpose. It is true that it takes longer to write
‘NumberOfCustomers’ than just ‘C’, but it a years time when you look back
at your code it will be a lot easier to remember what that variable is intended
to do.

A common exception to this rule is the variables used for loops. It is common
to call the variable ‘i’ if you have a second loop within the first the variable
name ‘j’ is often used and so on. Also variables used for coordinates are often
called just x or y.

3. Make variable names easier to read.

If a name contains multiple words it is common to break them up in some
way to make them more readable. This is either done by using capital letters
for each word or separating them with underscores.

Right Wrong

int intNumberOfVegetables;
int int_number_of_vegtables;
int IntNumberOfVegtables;

int intnumberofvegtables;

4. Use nouns for class names.

Since a class is a representation of an object it nearly always makes sense to
use a noun to describe it.

Right Wrong

class Car;
class EditBox;

class IsItADrivingThing;
class HasItWheels;

5. Use verbs for method or function names.

Since functions carry out actions it nearly always makes sense to use a verb to
describe them. If a function returns a Boolean value verbs like is, has, can, etc
are most suitable.

Right Wrong

string MakeNameString();
int CountToTen();
bool IsNameValid();
bool CanQuit();

string NameString();
int Ten();
bool NameValid();
bool Quit();

6. Make constant variables more obvious.

Since constants name a value that will not change it makes sense to name
them in such a way that the code looks wrong if you try to use a constant as a

normal variable and assign a value to it. This is usually achieved by using all
capital letters for the constant name.

Right Wrong

int DAYS_IN_THE_YEAR = 365;
float PI = 3.141592;

int days_in_the_year = 365;
float pi = 3.141592;

The second point can be extended for GUI components, by adding an abbreviated form of
the component name to the start of the variable. For example

Component Suggested Name

wxTextCtrl
wxPanel
wxButton
wxStaticLabel
wxCheckBox
wxRadioButton

wxTextCtrl txtSomeName;
wxPanel pnlSomeName;
wxButton btnSomeName;
wxStaticLabel lblSomeName;
wxCheckBox chkSomeName;
wxRadioButton rdbSomeName;

This covers the basics but there is a lot more to naming conventions. To find out more
simply type ‘Naming Conventions’ into any search engine. Some links worth looking at
are:

http://en.wikipedia.org/wiki/Identifier_naming_convention
http://www.joelonsoftware.com/articles/Wrong.html
http://en.wikipedia.org/wiki/Hungarian_notation

Remember the most important thing is to settle on or develop a convention you are
comfortable with and be consistent with it.

Mnemonics and Keyboard Accelerators

Mnemonics

Mnemonics are letters in a menu or on certain controls that are underlined. They allow
the user to hold down the ALT key and press the underlined letter on the keyboard to
simulate clicking on that menu entry or control. This works on unix and Windows
platforms, at present this is not implemented on Macintosh platforms.

We saw an example of using mnemonics when building our first wxWidgets program.
We used them while building the menu. Do you remember those using ‘&’ in the
captions. The letter that the ‘&’ proceeds is used as the mnemonic. Often this will be the
first letter of the menu entry, but as mnemonics need to be unique sometimes the first
letter is unavailable in which case other letters with a strong association, e.g. ‘E&xit’. Try
to avoid letters that descend as the underline can be hidden by these. E.g. ‘g’,’p’,’j’.
Avoid narrow character such as ‘i’.

Some of these mnemonics are conventions, for example ‘E&xit’, ‘&File’, ‘Cu&t’ and so
on. If you are unsure what to use, try looking at other well known programs and see what
they use. Other than that some general rules to help you are. Try to use the first or second
letter in a word. E.g. ‘&File’, ‘&Help’. Try to use a distinctive constant. E.g. ‘E&xit’.

Generally Mnemonics are used on all controls that can contain text captions and can be
clicked upon. Common exceptions are OK and Cancel buttons which should be mapped
to ENTER and DELETE.

There is another convention that applys to menu items that is worth mentioning here. If
clicking on the menu item will open a dialog box then the convention is to end the menu
items caption with ‘…’ for example ‘Properties …’

Keyboard Accelerators

Keyboard Accelerators are keys or key combinations that the user can press to activate
certain functions. We have already come across these in wxDev-C++ itself. For example
when we press <F9> to compile and run, F9 is a keyboard accelerator. Again we used
them in our first wxWidgets program. This was the part after the menu name that began
with ‘\t’ everything after the ‘\t’ was the keyboard accelerator.

Once again keyboard accelerators follow conventions, a table with a few of these follows.
Once again if in doubt check other professional programs and see what they have used.

New Ctrl+N Redo Shift + Ctrl + Z Find Ctrl+F
Open Ctrl+O Cut Ctrl+X Select All Ctrl+A
Save Ctrl+S Copy Ctrl+C Search Again F3
Print Ctrl+P Paste Ctrl+V Goto Line Ctrl+G
Undo Ctrl + Z Delete Del Help F1

You may think that all this mnemonic and keyboard accelerator nonsense is just useless
bells and whistles for a program. If so just wait until the day the mouse attached to your
computer stops working. That is the day you will thanks someone for spending the time
to make sure that you can operate your computer using only the keyboard.

Working with Multiple Source Code Files

As you program you will notice that some programs come in one massive source code
file and others are split into multiple smaller files, some with .c or .cpp file name
extensions and some with .h extensions (there are many other extensions but these are the
ones I come across most often). So what are the advantages or disadvantages of using
many source files? And how do we go about doing this?

To Be Written

Other points

The wyoGuide by Otto Wyss covers many more points for making your application look
and act in a professional manner. It is well worth downloading and reading. Then perhaps
use it to add some more features to the sample application.

Sample Application Part 4 – Making It Professional

This section is down to you, consider it homework if you like. Your assignment is to read
through Otto Wyss’ wyoGuide then implement some or all of the points to make our
application more professional. Here is a list of points you might want to try
implementing.

Chapter 2 – Basic Frame Layout

Try writing code that sets the main frame to a reasonable default size. You could then try
implementing code which allows the user to save and load a preferred size and position.
These could be saved in a config file our application already created one that is held in
the pointer m_fileConfig.

You could alter the title bar to display more information such as the application name and
the name of the currently opened file or Unitled.html if the current file has no name.

You could also alter the status bar to contain a new field showing the current file name
and more feedback information.

Chapter 6 - ‘Preferences’

Try to add a new menu item that produces a preferences dialog. This dialog could allow
the user to show/hide the status and toolbars. It could contain options to allow the user to
decide wether the splashscreen and tip box should be displayed or not.

On the subject of tips it is also good to keep track of the last tip the user was shown and
save it to start in the same place next time the program runs.

You could also add a menu with check items that turn these preferences on or off.

You could also implement loading and saving of these preferences via a config file.

Chapter 11 – ‘Miscellaneous’

If you are really adventurous you could try implementing drag and drop to open files.

All of the above points with the exception of drap and drop have been incorporated into
the source code for the sample application in the Chapter 11 file.

Basic wxDev-C++ Related FAQs

Q. Why does my program look different when I compile it?

A. If the differences are confined to the placement of controls, size of controls or

other minor differences then there are two reasons.
The first is that wxDev-C++ is written using Delphi not wxWidgets, therefore the
look of the controls may not correspond exactly.
The second reason is that wxDev-C++ is a work in hand. Features are still being
added and improved, at some later date these differences may be worked on and
corrected. If it is a big problem you can file a bug report at sourceforge to alert the
developers.
If the problem is that your program doesn’t look like an XP program read the next
FAQ

Q. Why does my program not look like a Windows XP program when I compile

it?

A. If your program looks like a Windows XP program in the visual designer but

when you compile and run it, it looks like a Windows 9x program then the cure is
simple.
In wxDev-C++ go to the menu Project|Project Options or press [Alt] + [P] to
bring up the following dialog.

Figure ?.? – The Project Options dialog

The tab you want is the one that is already open and just above the buttons is a
check box titled ‘Support Windows XP Themes’, check this. Click on [OK] then
press <F9> to recompile and run. You should have a shiny new XP themed
program.

Q. wxDev-C++ keeps crashing what’s wrong, what can I do?

A. Since wxDev-C++ is pretty stable it is a work in hand and will contain bugs and at

times those bugs will crash the IDE. Sometimes it is a problem in wxDev-C++’s
code and sometimes it will be due to the configuration of your computer. So what
can you do about it?

Firstly don’t write to the developers or forums with messages like this “wxDev-
C++ crashes, please fix it” or “wxDev-C++ has just crashed what is wrong with
it?”. The developers are only human (yes it is true!) they can not guess from
messages like that what has gone wrong.

The correct procedure is to file a bug report. When the IDE crashes it will
generally produce the following dialog.

Figure x.x – wxDev-C++ error dialog

The section of most interest to us is circled in red.

The following steps will vary depending on whether you choose to save the bug
report first or just mail it. Steps 1 – 2 are the same for both. Step 3 is only if you
have chosen to save a bug report.

So choose either

Save bug report
Or Mail bug report

Then follow the next steps

Step 1 In the dialog enter your contact information. This allows the developers to

contact you if they need further information or to inform you about
possible solution and fixes.

Click [Continue].

Figure x.x - Step 1, Entering your contact information

Step 2 Although you can skip this step it is not very helpful. So enter everything
you did leading up to the crash. Enter as much detail as possible here as
this will allow the developers to try to reconstruct the steps that lead to this
situation.

Click [Continue]

Figure x.x - Step 2, Reporting the steps leading to the crash

Step 3 If you chose to save the bug report then the next dialog you will see is a
save dialog. Save the bug report under any name you wish.

Figure x.x – Step 3, Saving a bug report.

Click [Save]

You will be returned to the crash dialog.

Click [Mail bug report]

Steps 1 and 2 will already be filled, this will be evident by the continue
button being coloured dark green.

Continue on to the final stage.

Step 4 The final stage is to send a screenshot of your desktop and the state of

wxDev-C++, this is generated automatically by the report generator. This
can give the developers useful information about the state of your system
and the IDE.

Figure x.x – Screenshot of your desktop and wxDev-C++ running.

Now the report generator will contact your default email client to create an
email to the developers.

Step 5 Add any extra information in this email, but nothing rude, remember they
are working hard to develop this and provide it free of charge. Finally
send the email.

Figure x.x – Email carrying the completed bug report.

Q. I started wxDev-C++ then selected File|New|New wxFrame. Three files

Frm1h, Frm1.cpp and Frm1.wxform were created, but when I pressed
compile nothing happens. If I press Ctrl+11 a dialog that says ‘Rebuilding…’
appears and nothing happens. What is wrong?

A. Nothing is wrong. The New wxFrame options just adds a new frame to your

project. If you haven’t begun a wxWidgets project then there is nothing for the
compiler to compile therefore it wont do anything.

Q. I try to compile my project but get lots of errors like the following:

My ProjectFrm.h:33: error: expected unqualified-id before numeric constant
My ProjectFrm.h:33: error: expected `,' or `;' before numeric constant

What is the problem?

A. The most usual cause of this is that when you created a new project you included

spaces in the project name. If unnoticed this can result in the generated class
names containing spaces which is not legal in C++. Spaces in the project’s
filenames can also create problems since the make program which is used to call
the compiler can interpret the space as the end of the filename. (The problem with
spaces in the filenames is reported to be fixed).

Q. I disabled code completion, but the visual designer keeps complaining, why

does the designer need code completion enabled?

A. When you use the designer to add event function to your project, the designer

needs to determine the best place to insert this function and check that a function
with the same name does not already exist. If you don’t intend to add events you
don’t need code completion enabled.

Q. I have installed a new version of wxDev-C++ or a new version of the

wxWidgets library. Now when I try to compile a previously working project I
get this error “cannot find –lwxmsw25”. What is wrong?

A. The problem that is being reported is that the linker cannot find one of the library

files. In this case it is the base wxWidgets file. This problem generally arises due
to the naming convention of the wxWidgets libraries. These are named ‘l’ for
library ‘wx’ for wxWidgets, then the platform ‘msw’, finally the library version
number in this case 2.5.x. It is the last part that causes problems. Your project has
been linked to the 2.5.x library but if you have updated you may now be using
2.6.x or 2.7.x and so on. So how to fix the problem?

Open the Project Options dialog via Project|Project Options. Then select the tab
labelled “Additional Command-line options”. In the text control under the label
Linker look for any options that contain a 25 and alter this to 26 or whatever
version of library you are using.

Figure x.x – The Project Options dialog showing wxWidgets 2.6.x library files

Q. I have installed a new version of wxDev-C++ or a new version of the

wxWidgets library. Everything compiles fine, but when I try to run the
program I get a library mismatch error dialog. What is wrong?

A. This problem occurs because some parts of the program are compiled with the old

library and other parts are compiled with the new library. As a result you will see
an error dialog like the following.

Figure x.x – The library mismatch dialog

The answer is simple. Go to the menu option Execute|Rebuild All or press Ctrl +
F11. This will recompile all the source files in your application with the new
library.

Q. I altered a line in the wxWidgets setup.h file to enable a feature I need. Now
when I build my program I get a library mismatch dialog. What did I do
wrong?

A. This problem occurs because the wxWidgets library has been compiled with the
settings previously in the setup.h file. However because you have altered the
settings in setup.h they no longer match those within the library. As a result you
will see an error dialog like the following.

Figure x.x – The library mismatch dialog

There are two solutions, the first is if you can manage without the feature simply
change the settings in setup.h back to their previous settings.

The second option is if you need the features. Then you will need to recompile the
wxWidgets libraries using the settings you need.

Q. I try to compile my wxWidgets project but I keep getting the error
“[Resource error] can’t open cursor file ‘wx/msw/hand.cur’: No such file or
directory. What am I doing wrong?

A. Firstly don’t worry this is an ongoing problem that raises its head every now and

then. This should be fixed in the latest versions of wxDev-C++ but if you do run
into this problem here is how to fix it. Open the Project Options dialog via
Project|Project Options. Go to the Directories tab and under Resource Directories
add the include path to your copy of wxDev-C++ this will be either ‘C:\Dev-
Cpp\include’ if you installed to the default directory or whatever path you chose
to install to plus ‘\include’.

Figure x.x – Project Options dialog showing the resource include path.

Q. I tried to compile my project but I get the error

In file included from MyProject_private.rc
wx/msw/wx.rc: No such file or directory.

A. This problem is related to the proceeding problem and the answer is the same.

Q. wxDev-C++ adds wxT() around my strings, however I want my strings to be

translatable. How do I get wxDev-C++ to add _() around my strings.

A. In wxDev-C++ 6.9 onwards right click on the designer form. From the following

menu choose “View Designer Options”.

From the following dialog choose the tab “Code Generation Options”, From the
drop down box labelled “String Internationalization” Choose the option _().

Q. I moved my project files (or downloaded the source code examples) and now
I’m getting an error like

 mingw32-make.exe: *** No rule to make target
`../Src/Chapter8/Default_Profile/HTMLEdit_private.r c', needed by
`../Src/Chapter8/Default_Profile/HTMLEdit_private.r es'

A. The reason for this is that wxDev-C++ holds the full path to the projects resources
in the projects .dev file. The work around is simple.

Open the Project Option dialog via Project|Project Options.
Click on the [OK] button

This will cause the file paths to be regenerated.

Q. I am using wxDev-C++ Version 6.10 or 6.10.1 and the class browser does not
seem to be working. What can I do?

A. If your project located under the installation directory (e.g. C:\Program Files\Dev-

Cpp\My Project)? If so then follow these steps.

Go to Tools|Compiler Options.
In the Compiler Options dialog goto the Directories tab
Under the Directories tab choose the C++ Includes tab
Removing the installation directory e.g. C:\Program Files\Dev-Cpp or
C:\Dev-Cpp from the list of included directories
Then close and restart wxDev-C++

Alternatively you can move your project to a different directory e.g. C:\My
Documents\My Project

Q. I am using wxDev-C++ with the Microsoft compiler. At link time I get the

error <filename>.obj : error LINK2001 : unresolved external symbol __pexit.
What is wrong?

A. To solve this go to Project|Project Options. In the resulting dialog goto Compiler

tab, then Code Generation. Set the option enable _pexit function call to False.

Q. I want to create large frames but I cannot drag the frame beyond the

boundaries of the designer or access all of the frame.

A. To make the frame the size that you want, enter the height and width in the

Property Inspector. To access parts of the frame hidden by the IDE you need to
move the frame altering the top and left dimensions in the Property Inspector to
minus figures.

Q. I have one or more floating yellow boxes containing function definitions that
reappear every time I load my project. Even when I minimise wxDev-C++
they are still there. How cam I get rid of them?

A. The problem occurs because the text cursor is inside the parameter section of a
function. Normally when you switch tab the pop up box disappears. However the
cursor positions are saved and when a project is reloaded the popup boxes can
appear if the cursor on a tab is within a function parameter.

 Figure x.x – The popup boxes while I am writing this item

Figure x.x – The cursor was positioned where the red circle is

 Until a fix is made the solution is to select each tab that contains code and move
the cursor to a new position, preferably a blank line.

Q. Where can I go for more help?

A. The best place to ask for wxDev-C++ related help is on the wxForum. There are

special sub conferences devoted to using wxDev-C++, writing C++ programs,
using wxWidgets addons and much more.

Another resource for wxWidgets related problems is the wxWiki . More resources
can be located in the Resources Section.

Part 3 – Advanced Development with wxWidgets and
wxDevC++

Chapter 13 - Creating and using other controls

The Simple Way

The Complex Way

Chapter 14 – Working with other frameworks

OpenGL

SDL

Part 4 – Going Beyond the Boundaries of this Book

Alternatives
wxFormDesigner
Code::Blocks
DialogBlocks

Resources

C Programming

Thinking in C - http://mindview.net/CDs/ThinkingInC/beta3

C++ Programming

Thinking in C++ Volume 1+2 by Bruce Eckel - http://mindview.net/Books

http://www.freeprogrammingresources.com/cppbooks.html

C++ Beginners tutorial: http://www.cplusplus.com/doc/tutorial/

wxWidgets Programming

wxForum - http://wxforum.shadonet.com/index.php

C++ Programming -
http://wxforum.shadonet.com/viewforum.php?f=1&sid=f3c4ab06a21
f8248456041044680ff5c

wxDev-C++ -
http://wxforum.shadonet.com/viewforum.php?f=28&sid=f3c4ab06a2
1f8248456041044680ff5c
wxCode -
http://wxforum.shadonet.com/viewforum.php?f=30&sid=f3c4ab06a2
1f8248456041044680ff5c

wxWiki - http://www.wxwidgets.org/wiki/index.php/Main_Page

Program Design

wyoGuide - http://wyoguide.sourceforge.net/guidelines/content.html - by
Otto Wyss

Articles about wxDev-C++

Cross-platform GUI development with wxWidgets -
http://www.developer.net.au/Crossplatform_GUI_development_with_wxWi
dgets.htm - by Daniel Winter

Appendix

Appendix A - Keyboard Shortcuts

Key(s) Shortcut description
Left Arrow Left one character
Right Arrow Right one character
Up Arrow Up one line
Down Arrow Down one line
Control + Left Left one word
Control + Right Right one word
Home Start of line
End End of line
Page Up Up one page
Page Down Down one page

Appendix B – C/C++ Keywords

Keyword C89 C99 C++ Meaning
_Bool �
_Complex �
_Imaginary �
asm �
auto � � �
bool �
break � � �
case � � �
catch �
char � � �
class �
const � � �
const_cast �

continue � � �
default � � �
delete �
do � � �
double � � �
dynamic_cast �
else � � �
enum � � �
explicit �
export �
extern � � �
false �
float � � �
for � � �
friend �
goto � � �
if � � �
inline � �
int � � �
long � � �
mutable �
namespace �

new �
operator �
private �
protected �
public �
register � � �
reinterpret_cast �
restricted �
return � � �
short � � �
signed � � �
sizeof � � �
static � � �
static_cast �
struct � � �
switch � � �
template �
this �
throw �
true �
try �
typedef � � �
typeid �
union � � �
unsigned � � �
using �
virtual �
void � � �
volatile � � �
wchar_t �
while � � �

Appendix C – wxDev-C++ event names and wxWidgets eq uivalents

Event Name Example Control Event Occurs When

On3StateImageClick TreeCtrl
OnActivate Frame The frame receives or loses focus,

usually this will be indicated by
the caption changing colour.

Event name - ‘wxActivateEvent’.

OnActivateApp Frame When the application receives or
loses focus, usually by one of its
frame receiving or losing focus.

Event name - ‘wxActivateEvent’.

OnAutoCompSelection StyledTextCtrl
OnBeginDrag ListCtrl
OnBeginLabelEdit ListCtrl
OnBeginRDrag ListCtrl
OnCacheHint ListCtrl
OnCallTipClick StyledTextCtrl
OnChange StyledTextCtrl
OnChar Frame A keypress occurs. The event

translates the key pressed into its
actual value for example if the ‘A’
is pressed and shift is not then the
event will hold ‘a’. For more info
see ‘wxKeyEvent’.

OnCharAdded StyledTextCtrl
OnCheckListBox CheckListBox
OnClick Button
OnClickUrl TextCtrl
OnClose Frame A user tries to close the frame, for

example by clicking on the ‘X’
button in the caption. This event is
helpful if you want to carry out
some process like saving
information before the frame
closes. See ‘wxCloseEvent’ for
further details.

OnColBeginDrag ListCtrl
OnColDragging ListCtrl
OnColEndDrag ListCtrl
OnColLeftClick ListCtrl
OnColRightClick ListCtrl

OnColourChange Frame A system colour is changed for
example through the control
panel. See
‘wxSysColourChangedEvent’ for
more details.

OnDateChanged DatePickerCtrl
OnDay CalendarCtrl
OnDeleteAllItems ListCtrl
OnDeleteItem ListBox
OnDeselectItem ListCtrl
OnDeselected ListCtrl
OnDialupConnected DialUpManager
OnDialupDisConnected DialUpManager
OnDoDrop StyledTextCtrl
OnDoubleClick SplitterWindow
OnDoubleClicked ListBox
OnDown SpinButton
OnDragOver StyledTextCtrl
OnDropFiles Frame Files have been drag onto a

window and dropped. See
‘wxDropFilesEvent’ for more
details.

OnDwellEnd StyledTextCtrl
OnDwellStart StyledTextCtrl
OnEndDrag TreeCtrl
OnEndLabelEdit ListCtrl
OnEndSession Frame The whole application is ending.

See ‘wxCloseEvent’ for further
details.

OnEnter TextCtrl
OnEnterWindow Frame When the mouse cursor first

enters the window. See
‘wxMouseEvent’ for more details.

OnEraseBackground Frame Just before a window paint event.
See ‘wxEraseEvent’ for more
details.

OnGetInfo TreeCtrl
OnHotspotClick StyledTextCtrl
OnHotspotDClick StyledTextCtrl
OnHyperLink HyperlinkCtrl
OnIdle Frame The system becomes idle,

normally only one such event is
sent each time the system idles.
See ‘wxIdleEvent’ for further
details.

OnInitDialog Frame The window is being initialised.
See ‘wxInitDialogEvent’ for more
details.

OnInsertItem ListCtrl
OnItemActivated ListCtrl
OnItemCollapsed TreeCtrl
OnItemCollapsing TreeCtrl
OnItemDeSelected RichTextCtrl
OnItemExpanded TreeCtrl
OnItemExpanding TreeCtrl
OnItemFocused ListCtrl
OnItemGetTooltip TreeCtrl
OnItemMClick TreeCtrl
OnItemMenu TreeCtrl
OnItemRClick TreeCtrl
OnItemSelected RichTextCtrl
OnJoyButtonDown Frame wxJoyButtonDown
OnJoyButtonUp Frame
OnJoyMove Frame
OnJoyZMove Frame
OnKey StyledTextCtrl
OnKeyDown Frame A key is pressed down. If the key

is held down then this event will
be sent repeatedly. The keys value
is not translated. See
‘wxKeyEvent’ for more details.

OnKeyUp Frame A previously depressed key is
released. Unlike OnKeyDown,
there is only one OnKeyUp event.
The keys value is not translated.
See ‘wxKeyEvent’ for more
details.

OnKillFocus Frame
OnLabelLeftClick Grid
OnLabelLeftDoubleClick Grid
OnLabelRightClick Grid
OnLabelRightDoubleClick Grid
OnLeaveWindow Frame
OnLeftDClick Frame
OnLeftDown Frame
OnLeftUp Frame
OnMacroRecord StyledTextCtrl
OnMarginClick StyledTextCtrl
OnMaxLen TextCtrl
OnMediaFinished MediaCtrl

OnMediaLoaded MediaCtrl
OnMediaPause MediaCtrl
OnMediaPlay MediaCtrl
OnMediaStop MediaCtrl
OnMenu ToolBar
OnMenuClose Frame
OnMenuHighLightAll Frame
OnMenuOpen Frame
OnMiddleClick ListCtrl
OnMiddleDclick Frame
OnMiddleDown Frame
OnMiddleUP Frame
OnModified StyledTextCtrl
OnMonth CalendarCtrl
OnMouseEvents Frame
OnMouseMotion Frame
OnMouseWheel Frame
OnNeedShown StyledTextCtrl
OnPageChanged Notebook
OnPageChanging Notebook
OnPaint Frame
OnPainted StyledTextCtrl
OnQueryEndSession Frame
OnRangeSelect Grid
OnReturn RichTextCtrl
OnRightClick ListCtrl
OnRightDclick Frame
OnRightDown Frame
OnRightUP Frame
OnROModifyAttempt StyledTextCtrl
OnRowSize Grid
OnSashPosChanged SplitterWindow
OnSashPosChanging SplitterWindow
OnSavePointLeft StyledTextCtrl
OnSavePointReached StyledTextCtrl
OnScroll Slider
OnScrollbar ScrollBar
OnScrollBottom ScrollBar
OnScrollEnd ScrollBar
OnScrollLineDown ScrollBar
OnScrollLineUp ScrollBar
OnScrollPageDown ScrollBar
OnScrollPageUp ScrollBar
OnScrollThumbRelease ScrollBar
OnScrollThumbtrack ScrollBar

OnScrollTop ScrollBar
OnScrollWin Frame
OnScrollWinBottom Frame
OnScrollWinLineDown Frame
OnScrollWinLineUp Frame
OnScrollWinPageDown Frame
OnScrollWinPageUp Frame
OnScrollWinThumbRelease Frame
OnScrollWinThumbTrack Frame
OnScrollWinTop Frame
OnSelChanged TreeCtrl
OnSelChanging TreeCtrl
OnSelectCell Grid
OnSelected wxChoice
OnSetFocus Frame
OnSetInfo TreeCtrl
OnSize Frame
OnSpinDown SpinCtrl
OnSpinUp SpinCtrl
OnSplitterDoubleClick Frame
OnSplitterSashPosChanged Frame
OnSplitterUnSplit Frame
OnStartDrag StyledTextCtrl
OnSTCUpdateUI StyledTextCtrl
OnStyleNeeded StyledTextCtrl
OnTextEnter wxComboBox
OnTimer Timer
OnTool ToolBar
OnToolEnter ToolBar
OnUnSplit SplitterWindow
OnUp SpinButton
OnUpdated TextCtrl
OnUpdateUI Most
OnURIDropped StyledTextCtrl
OnUserListSelection StyledTextCtrl
OnWeekDayClicked CalendarCtrl
OnYear CalendarCtrl
OnZoom StyledTextCtrl

